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Preface

Mathematical models of the most physical phenomena are governed by initial and
boundary value problems for partial differential equations (PDEs). Inverse problems
governed by these equations arise naturally in almost all branches of science and
engineering. The main objective of this textbook is to introduce students and
researchers to inverse problems arising in PDEs. This book presents a systematic
exposition of the main ideas and methods in treating inverse problems for PDEs
arising in basic mathematical models, though we make no claim to cover all of the
topics. More detailed additional information related to each chapter can be found in
the following books/lecture notes/monographs of Aster, Borchers, and Thurber [2],
Bal [6], Baunmeister [8], Beilina and Klibanov [9], Belishev and Blagovestchenskii
[12], Chadan and Sabatier [17], Colton and Kress [19], Engl, Hanke, and Neubauer
[23], Groetsch [31], Háo [36], Hofmann [43], Isakov [45, 46], Itou and Jin [48],
Kabanikhin [50], Kaipio and E. Somersalo [51], Kirsch [54], Lavrentiev [58],
Lavrentiev, Romanov, and Shishatski [59], Lavrentiev, Romanov, and Vasiliev
[60], Lebedev, Vorovich, and Gladwell [61], Louis [63], Morozov [68], Nakamura
and Potthast [72], Natterer [74], Ramm [84], Romanov [85, 86], Romanov and
Kabanikhin [87], Schuster, Kaltenbacher, Hofmann, and Kazimierski [90],
Tarantola [92], Tikhonov and Arsenin [97], Tikhonov, Concharsky, Stepanov, and
Yagola [98], Vogel [102].

In Introduction, we discuss the nature of ill-posedness in differential and integral
equations based on well-known mathematical models. Further, we pursue an
in-depth analysis of a reason of ill-posedness of an inverse problem governed by
integral operator. We tried to answer the question “why this problem is ill-posed?”,
by arriving to the physical meaning of the mathematical model, on one hand, and
then explaining this in terms of compact operators, on the other hand. Main notions
and tools, including best approximation, Moore–Penrose (generalized) inverse,
singular value decomposition, regularization strategy, Tikhonov regularization for
linear inverse problems, and Morozov’s discrepancy principle, are given in Chap. 1.
In Chap. 2, we tried to illustrate an implementation of all these notions and tools to
inverse source problems with final overdetermination for evolution equations and to
the backward problem for the parabolic equation, including some numerical
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reconstructions. The reason for the choice of this problem stems from the fact that
historically, one of the first successful applications of inverse problems was
Tikhonov’s work [93] on inverse problem with final overdetermination for heat
equation.

The second part of the book consists of almost independent six chapters. The
choice of these chapters is motivated by the fact that the inverse coefficient and
source problems considered here are based on the basic and commonly mathe-
matical models governed by PDEs. These chapters describe not only these inverse
problems, but also main inversion methods and techniques. Since the most dis-
tinctive features of any inverse problem related to PDEs are hidden in the properties
of corresponding direct problems solutions, special attention is paid to the inves-
tigation of these properties.

Chapter 3 deals with some inverse problems related to the second-order
hyperbolic equations. Starting with the simplest inverse source problems for the
wave equation with the separated right-hand side containing spatial or time-
dependent unknown source functions, we use the reflection method to demonstrate
a method for finding the unknown functions based on integral equations. The next
and more complex problem here is the problem of recovering the potential in the
string equation. The direct problem is stated for semi-infinite string with homo-
geneous initial data and non-homogeneous Dirichlet data at the both ends. The
Neumann output is used as an additional data for recovering an unknown potential.
Using the method the successive approximations for obtained system of integral
equations, we prove a local solvability for the considered inverse problem. Note
that the typical situation for nonlinear inverse problems is that the only local
solvability can be proved (see [88]). Nevertheless, for the considered inverse
problem, the uniqueness and global stability estimates of solutions are derived. As
an application, inverse coefficient problems for layered media are studied in the
final part of Chap. 3.

Chapter 4 deals with inverse problems for the electrodynamic equations. These
problems are motivated by geophysical applications. In the considered physi-
cal model, we assume that the space R

3 is divided in the two half-spaces R
3
� ¼:

fx 2 R
3jx3\0g and R

3
þ ¼: fx 2 R

3jx3 [ 0g. The domain R
3
� is filled by homo-

geneous non-conductive medium (air), while the domain R
3
þ contains a ground

which is a non-homogeneous medium with variable permittivity, permeability, and
conductivity depending on the variable x3 only. The tangential components of the
electromagnetic field are assumed to be continuous across the interface x3 ¼ 0. The
direct problem for electrodynamic equations with zero initial data and a dipole
current applied at the interface is stated. The output data here is a tangential
component of the electrical field given on the interface as a function of time t[ 0.
A method for reconstruction of one of the unknown coefficients (permittivity,
permeability, or conductivity) is proposed when two others are given. This method
is based on the Riemannian invariants and integral equations which lead to a
well-convergent successive approximations. For the solutions of these inverse
problems, stability estimates are stated.
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Coefficient inverse problems for parabolic equations are studied in Chap. 5. First
of all, the relationship between the solutions of direct problems corresponding to the
parabolic and hyperbolic equations is derived. This relationship allows to show the
similarity between the outputs corresponding inverse problems for parabolic and
hyperbolic equations. Since this relationship is a special Laplace transform, it is
invertible. Then it is shown that inverse problems for parabolic equations can be
reduced to corresponding problems for hyperbolic equations, studied in Chap. 3.
This, in particular, allows to use uniqueness theorems obtained for hyperbolic
inverse problem. Further it is shown that the inverse problem of recovering the
potential is closely related to the well-known inverse spectral problem for the
Sturm–Liouville operator.

Chapter 6 deals with inverse problems for the elliptic equations. Here the inverse
scattering problem for stationary Schrodinger equation is considered. For the sake
of simplicity, we study this problem in Born approximation using the scattering
amplitude for recovering a potential, following the approach proposed by R.
Novikov [66]. Moreover, we study also the inverse problem which output is a
measured value on a closed surface S of a trace of the solution of the problem for
the Schrodinger equation with point sources located at the same surface. The later
problem is reduced to the X-ray tomography problem. In the final part of this
chapter, we define the Dirichlet-to-Neumann operator which originally has been
introduced by J. Sylvester and G. Uhlmann [86]. Using this operator, we study the
inverse problem of recovering the potential for an elliptic equation in the Born
approximation and reduce it to the moment problem which has a unique solution.

In Chap. 7, inverse problems related to the transport equation without scattering
are studied. We derive here the stability estimate for the solution of X-ray
tomography problem and then inversion formula.

The inverse kinematic problem is studied in the final Chap. 8. On one hand, this
is a problem of reconstructing the wave speed inside a domain from given travel
times between arbitrary boundary points. On the other hand, this is also the problem
of recovering conformal Riemannian metric via Riemannian distances between
boundary points, which plays very important role in geophysics. It suffices to recall
that much of our knowledge about the internal structure of the Earth are based on
solutions of this problem. We derive first the equations for finding rays and fronts
going from a point source. Then we consider one-dimensional and two-dimensional
inverse problems and derive a stability estimates for the solutions of these
problems.

For the convenience of the reader, a short review related to invertibility of linear,
in particular compact, operators is given in Appendix A. Some necessary energy
estimates for a weak and regular weak solutions of a one-dimensional parabolic
equation are given in Appendix B.

The presentation of the material, especially Introduction and Part I, is
self-contained and is intended to be accessible also to undergraduate and beginning
graduate students, whose mathematical background includes only basic courses in
advanced calculus, PDEs, and functional analysis. The book can be used as a
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backbone for a lecture on inverse and ill-posed problems for partial differential
equations.

This book project took us about two and a half years to complete, starting from
May, 2014. We would not be able to finish this book without support of our family
members, students, and colleagues. We are deeply indebted to a number of col-
leagues and students who have read this material and given us many valuable
suggestions for improving the presentation. We would like to thank our colleagues
Onur Baysal, Andreas Neubauer, Roman Novikov, Burhan Pektaş, Cristiana Sebu,
and Marian Slodišcka who have read various parts of the manuscript and made
numerous suggestions for improvement. Our special thanks to anonymous
reviewers who read the book proposal and the first version of the manuscript, as
well as to the staff members of Springer, Dr. Martin Peters and Mrs. Ruth Allewelt,
for their support and assistance with this project. We also are grateful to Mehriban
Hasanoğlu for number of corrections.

We would be most grateful if you could send your suggestions and list of mistakes
to the email addresses: alemdar.hasanoglu@gmail.com; romanov0511@gmail.com.

Izmit, Turkey Alemdar Hasanov Hasanoğlu
Novosibirsk, Russia Vladimir G. Romanov
November 2016
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Chapter 1
Introduction Ill-Posedness of Inverse
Problems for Differential and Integral
Equations

1.1 Some Basic Definitions and Examples

Inverse problems arise in almost all areas of science and technology, in modeling of
problems motivated by various physical and social processes. Most of these models
are governed by differential and integral equations. If all the necessary inputs in these
models are known, then the solution can be computed and behavior of the physical
system under various conditions can be predicted. In terms of differential problems,
the necessary inputs include such information as initial or boundary data, coefficients
and force term, also shape and size of the domain. If all these data are enough to
describe the system adequately, then it is possible to use the mathematical model
for studying the physical system. For example, consider the case of the simplest
one-dimensional model of steady-state heat transfer

{
(Lu))(x) := − (

k(x)u′(x)
)′ + q(x)u(x) = F(x), x ∈ (0, �),

u(0) = 0, (k(x)u′(x))x=� = ϕ, ϕ ∈ R,
(1.1.1)

where the heat coefficients (k(x), q(x)), external heat source F(x) and the heat flux
ϕ at the end x = � of the rod with length � > 0 are the given input data. If we
assume that k ∈ C1(0, �) ∩ C0[0, �], q, F ∈ C0(0, �), then the solution u(x) of the
two-point boundary value problem (1.1.1) is evidently in C2(0, �) ∩ C1[0, �]. This
solution exists, is unique and continuously depends on the above given input data, in
norms of appropriate spaces. If the rod is non-homogeneous and external heat source
has a discontinuity, then the solution u(x) of the boundary value problem (1.1.1)
needs to be considered in larger class of functions. Specifically, if

k ∈ K := {k ∈ L2(0, �) : 0 < c0 ≤ k(x) ≤ c1},
q ∈ Q := {q ∈ L2(0, �) : 0 ≤ q(x) ≤ c2},
F ∈ L2(0, �),

(1.1.2)

© Springer International Publishing AG 2017
A. Hasanov Hasanoğlu and V.G. Romanov, Introduction to Inverse
Problems for Differential Equations, DOI 10.1007/978-3-319-62797-7_1
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2 1 Introduction Ill-Posedness of Inverse Problems …

then there exists a unique solution u(x) of the boundary value problem (1.1.1) in
V1(0, �) := {u ∈ H 1(0, �) : u(0) = 0}. Here and below H 1(0, �) is the Sobolev
space [1]. Moreover, this solution continuously depends on the above given input
data, as we will show below. This means that the parameter-to-solution maps

Ak : k ∈ K ⊂ L2(0, �) �→ u ∈ V1(0, �),
Aq : q ∈ Q ⊂ L2(0, �) �→ u ∈ V1(0, �),
AF : F ∈ L2(0, �) �→ u ∈ V1(0, �)

(1.1.3)

are continuous. The sets K and Q are called the sets of input data.
The above mentioned three conditions (existence, uniqueness and continuous

dependence) related to solvability of various initial boundary value problems has later
been identified with the notion of a “well-posed problem”. Jacques Hadamard played
a pioneering role recognizing first and developing then the idea of well-posedness
at the beginning of the twentieth century. But initially, in [32], Hadamard included
only existence and uniqueness in the definition of well-posedness, insisting on the
fact that continuous dependence on the initial data is important only for the Cauchy
problem. This latter feature of a “well-posed problem” was added to Hadamard’s
definition by Hilbert and Courant in [21]. Many years later, Hadamard used this
corrected definition in his book [33], referring to Hilbert and Courant.

We formulate the definition of well-posedness for a linear operator equation Au =
F , A ∈ L(H, H̃), where L(H, H̃) denotes the set of all bounded linear operators
and H , H̃ are Hilbert spaces.

Definition 1.1.1 (well-posedness) The linear equation/problem Au = F , A ∈ L
(H, H̃) is defined to be well-posed in Hadamard’s sense, if
(i1) a solution of this equation exists, for all admissible data F ∈ H̃ ;
(i2) this solution is unique;
(i3) it depends continuously on the data.
Otherwise, the equation Au = F is defined to be ill-posed in Hadamard’s sense.

According to this definition the boundary value problem (1.1.1) is well-posed.
However, in practice it is not possible to measure experimentally all these inputs,

since in real physical systems the inputs can be defined as measurable and unmea-
surable ones. Instead, it is possible to measure experimentally certain (additional)
outputs of the system and use this information together with other inputs to recover
the missing, unmeasurable input. Hence, in a broad sense, an inverse problem can
be defined as the problem of determining unmeasurable parameters of a system from
measurable parameters, by using a mathematical/physical model.

Let us consider the case where q ∈ Q, F ∈ L2(0, �), ϕ ∈ R are the given inputs,
but the coefficient k(x) in (1.1.1) is unknown and needs to be determined from some
additional (physically reasonable) condition(s).

Example 1.1.1 Parameter identification (or inverse coefficient) problem for the
Sturm-Liouville operator Lu := −(ku′)′ + qu



1.1 Some Basic Definitions and Examples 3

Let q(x) ≡ 0 in (1.1.1) and the function F(x) be given as follows:

F(x) =
{
0, x ∈ [0, ξ],
1, x ∈ (ξ, �],

where ξ ∈ [0, �] is an arbitrary parameter. Then solution to problem (1.1.1) depends
on the parameter ξ ∈ [0, �], that is, u = u(x, ξ). We assume that the measured value
of u(x, ξ) at x = � is given as an additional information, i.e. as a measured output
data f, that is,

f (ξ) := u(�, ξ), ξ ∈ [0, �]. (1.1.4)

Based on this information we are going to identify the unknown coefficient k ∈ K,
i.e. the input data. We define the problem of identifying the unknown coefficient k(x)
in (1.1.1) from the output data f ∈ F ⊂ L2(0, �) given by (1.1.4) as a parameter
identification (or inverse coefficient) problem for the Sturm-Liouville operator. In this
context, for the given inputs k(x), q(x), F(x) and ϕ, the boundary value problem
(1.1.1) is defined as a direct problem.

We formulate the inverse problem of identifying the unknown coefficient k(x) in
terms of an operator equation. Let k ∈ K be a given admissible coefficient. Since
there exists a unique solution u := u(x, ξ; k) of the boundary value problem (1.1.1)
in V1(0, �), for each k ∈ K the trace u(x, ξ; k)x=l is uniquely determined. We define
this mapping as an input-output operator � : k �→ f as follows:

�[k](ξ) := u(x, ξ; k)x=l , u ∈ V1(0, �), k ∈ K, (1.1.5)

and reformulate this inverse problem as the problem of solving the following operator
equation

�[k] = f, k ∈ K, f ∈ F . (1.1.6)

Let us analyze now the inverse coefficient problem. Taking into account con-
ditions (1.1.3), we integrate Eq. (1.1.1) on (x, �) and use the boundary condition
(k(x)u′(x))x=� = ϕ. Then we obtain:

k(x)u′(x, ξ) = ϕ + ψ(x, ξ), (1.1.7)

where

ψ(x, ξ) =
{

� − ξ, x ∈ [0, ξ],
� − x, x ∈ (ξ, �], ξ ∈ [0, �]. (1.1.8)

Integrating (1.1.7) and using the boundary condition u(0) = 0 we get:



4 1 Introduction Ill-Posedness of Inverse Problems …

u(x, ξ) =
∫ x

0

ϕ + ψ(τ , ξ)

k(τ )
dτ , x ∈ [0, �]. (1.1.9)

Hence, the formula for finding k(x) is

f (ξ) = ∫ �

0
ϕ+ψ(τ ,ξ)

k(τ )
dτ

= ∫ ξ

0
ϕ+�−ξ
k(τ )

dτ + ∫ �

ξ
ϕ+�−τ
k(τ )

dτ , ξ ∈ [0, �]. (1.1.10)

Taking the first and then the second derivative of both sides we find:

f ′(ξ) = − ∫ ξ

0
dτ
k(τ )

,

f ′′(ξ) = − 1
k(ξ) , ξ ∈ [0, �]. (1.1.11)

It follows from (1.1.11) that f ′(0) = 0 and f ∈ H 2(0, �). Furthermore, k ∈ K
implies: 0 < 1/c1 ≤ − f ′′(ξ) ≤ 1/c0. Then, introducing the subsetV2(0, �) := { f ∈
H 2(0, �) : f ′(0) = 0}, where H 2(0, �) is the Sobolev space, we conclude that if
k ∈ K := {k ∈ L2(0, �) : 0 < c0 ≤ k(x) ≤ c1}, the set of admissible outputs is

F := { f ∈ V2(0, �) : 0 < 1/c1 ≤ − f ′′(ξ) ≤ 1/c0}. (1.1.12)

Moreover, the unknown coefficient is defined by the inversion formula:

k(ξ) = − 1

f ′′(ξ)
, ξ ∈ [0, �]. (1.1.13)

We can deduce from formula (1.1.13) the following estimate: if ki ∈ K and fi ∈
F , i = 1, 2, then

‖k1 − k2‖L2(0,�) ≤ 1

c21
‖ f1 − f2‖H 2[0,�], c1 > 0. (1.1.14)

This estimate is called the stability estimate of the inverse problem.
As noted above, under conditions (1.1.2) there exists a unique solution u(x) of the

boundary value problem (1.1.1) in H 1(0, �) for each k ∈ K ⊂ L2(0, �). Moreover,
as it is shown in the next section, this solution continuously depends on the input
data k(x), F(x) and ϕ. Therefore, the direct problem is well-posed from L2(0, �) to
H 1(0, �), by Definition 1.1.1.

Consider now the inverse problem (1.1.6), i.e. the problem of determining the
unknown k ∈ K ⊂ L2(0, �) from the given output f ∈ L2(0, �). Assume first the
input-output operator (1.1.5) acts from L2(0, �) to L2(0, �), that is, the range of the
operator � is the entire space: R(�) = L2(0, �). We may use formula (1.1.10) to
get the explicit form of this operator:
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�[k](ξ) :=
∫ �

0

ϕ + ψ(τ , ξ)

k(τ )
dτ , x ∈ [0, �].

Using formula (1.1.8) in the above integral we may derive, after elementary trans-
formations, the following explicit form of the input-output operator:

�[k](ξ) := ϕ

∫ �

0

dη

k(η)
+

∫ �

ξ

∫ η

0

1

k(τ )
dτ dη, x ∈ [0, �]. (1.1.15)

It follows from the theory of integral operators [103] that in this case the input-
output operator (1.1.15) is compact. As wewill prove in Lemma 1.3.1, if the operator
� : L2(0, �) �→ L2(0, �) is compact, then the problem �[k] = f is ill-posed. Thus,
if the input-output operator is defined from L2(0, �) to L2(0, �), then the inverse
problem (1.1.6) is ill-posed.

Assumenow that the input-output operator is defined from L2(0, �)not to L2(0, �),
but to H 1(0, �) ⊂ L2(0, �), that is,R(�) = H 1(0, �). The right hand side of the first
formula of (1.1.11) implies that the range restriction � : L2(0, �) �→ H 1(0, �) ⊂
L2(0, �) is well-defined, since k ∈ K ⊂ L2(0, l). Again, it follows from the theory of
integral operators that in this case the input-output operator (1.1.15) is also compact.
As a result, we conclude that if the input-output operator (1.1.15) is defined from
L2(0, �) to H 1(0, �), then the inverse problem (1.1.6) is still ill-posed.

We continue the range restriction, assuming finally that the input-output operator
is defined from L2(0, �) to F ⊂ H 2[0, �], where F is the set of outputs defined by
(1.1.12), that is, � : L2(0, �) �→ F ⊂ H 2[0, �]. This mapping is well-defined, due
to the second formula of (1.1.11), which also allows to derive the explicit form of
the inverse operator �−1 : R(�) = F ⊂ H 2[0, �] �→ L2(0, �):

k(x) := (�−1 f )(x) := − 1

f ′′(x)
, x ∈ [0, �].

Thus, if the input-output operator is defined as � : L2(0, �) �→ F ⊂ H 2[0, �], i.e.
if R(�) = F , then the inverse problem defined by (1.1.6) or by (1.1.1) and (1.1.4)
is well-posed. �

The above analysis of the simplest inverse coefficient problem shows some distin-
guished features of inverse problems.Thefirst feature is that if even the direct problem
(1.1.1) is linear, the inverse coefficient problem is nonlinear. Remark that, inverse
source problems corresponding to linear direct problems, in particular, considered in
Chap.3, are linear. The second feature is that besides the linear ill-posedness arising
from the differentiation operation in (1.1.13), there is a nonlinear ill-posedness due
to the presence of the quotient. Specifically, in practice, the output f ∈ L2(0, �) is
obtained frommeasurements and always contains a random noise. As a result, errors
at small values of f ′′(x) in (1.1.13) are amplified much stronger which can lead to
instability. These two features show that inverse coefficient problems are nonlinear
and most sensitive, while so-called inverse source problems are less sensitive and
linear.

http://dx.doi.org/10.1007/978-3-319-62797-7_3
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Another observation from above analysis is that, depending on the choice of
functional spaces, an inverse problem can be ill-posed or well-posed. To explain
the cause of this change in the framework of the linear theory of ill-posed problems,
given inChap.2,we define the new input-output operator as follows: �̂[k] = �[1/k],
where � is defined by (1.1.5). Then the inverse problem becomes a linear one:

�̂[k](ξ) := u(x, ξ; 1/k)x=l , u ∈ V1(0, �), k ∈ K.

The first statement here is that the restriction ofR(�̂) results in the restriction of the

null-spaceN (�̂∗)⊥ of the adjoint operator �̂∗, sinceR(�̂) = N (�̂∗)⊥, as proved in
Sect. 2.2. But what does it mean in terms of differential operators? Picard’s Theorem
in Sect. 2.4 says that the condition f ∈ N (�̂∗)⊥ is one of the necessary and suffi-
cient conditions for solvability of the operator equation �̂[k] = f . Hence the range
restriction is the restriction of the class { f } of the right hand side functions, in order
to get better functions to ensure a convergent SVD expansion. In terms of differential
problems this is equivalent to increasing the smoothness of the function f (x), i.e.
restricting the class of outputs, as stated in the Sect. 3.1.3. The second statement is
that the range restriction, step-by-step from L2(0, �) to H 2[0, �], led us to the fact
that the rangeR(�̂) = F of the input-output operator became compact in L2(0, �).
Indeed, Rellich’s lemma for Sobolev spaces asserts that if � ⊂ R

n is a bounded
domain, then the embedding H 1(�) ↪→ L2(�) is a compact operator. This lemma
implies, in particular, that every bounded set in H 1(�) is compact in L2(�). The
range restriction of the input-output operator �̂ : L2(0, �) �→ L2(0, �) from L2(0, �)
to the setF ⊂ H 2[0, �] ⊂ L2(0, �)means that we defined the domainD(�̂−1) := F
of the inverse operator to be compact in L2(0, �) (moreover, in H 1(0, �)). In this
compact set F , the stability estimate (1.1.14) for the operator �̂ can be treated also
as the Lipschitz continuity of the inverse operator �̂−1 : f �→ k:

∥∥∥�̂−1 f1 − �̂−1 f2
∥∥∥
L2(0,�)

≤ ‖ f1 − f2‖H 2[0,�], for all f1, f2 ∈ F .

Thus, a common situation in inverse and ill-posed problems rather is that compact-
ness plays a dual role in the ill-posedness of inverse problems. Whilst compactness,
as a property of the operator, plays a negative role, making actually the problem
worse, i.e. ill-posed, as a property of the domain D(�̂−1) := F of the inverse oper-
ator plays an essential positive role. This positive role has first been discovered by
Tikhonov [94, 97]. The fundamental Tikhonov’s lemma on the continuity of the
inverse of an operator, which is injective, continuous and defined on a compact set,
clearly illustrates this positive role and until now is used as an important tool in
regularization of ill-posed problems.

Lemma 1.1.1 (Tikhonov) Let H and H̃ be metric spaces and A : U ⊂ H �→ H̃ be
a one-to-one continuous operator with A(U ) = V . If U ∈ H is a compact set, then
the inverse operator A−1 : V ⊂ H̃ �→ U ⊂ H is also continuous.

http://dx.doi.org/10.1007/978-3-319-62797-7_2
http://dx.doi.org/10.1007/978-3-319-62797-7_2
http://dx.doi.org/10.1007/978-3-319-62797-7_2
http://dx.doi.org/10.1007/978-3-319-62797-7_3
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Proof Let v ∈ V be any element. Since the operator A : U ⊂ H �→ V ⊂ H̃ is one-
to-one, there exists a unique element u ∈ U such that u = A−1v. Now suppose,
contrary to the assertion, that the inverse operator A−1 : V ⊂ H̃ �→ U ⊂ H is not
continuous. This implies that there exists a positive number ε > 0 and an element
vδ ∈ V such that for all δ > 0 the following conditions hold:

ρH̃ (v, vδ) < δ, but ρH (A−1v, A−1vδ) ≥ ε. (1.1.16)

Due to the arbitrariness of δ > 0, there exists a sequence of positive numbers {δn}∞n=1
such that δn → 0+, as n → ∞. With (1.1.16) this implies that the corresponding
sequence of elements {vδn } ⊂ V satisfy the conditions:

ρH̃ (v, vδn ) < δn, but ρH (A−1v, A−1vδn ) ≥ ε. (1.1.17)

Taking the limit here, as n → ∞ we conclude

lim
n→∞ ρH̃ (v, vδn ) = 0. (1.1.18)

Being a subset of the compact U , the sequence {uδn }n=∞
n=1 ⊂ U , uδn := A−1vδn , has

a convergent subsequence {uδm }∞m=1 ⊂ {uδn }∞n=1. Then there exists an element ũ ∈ U
such that limm→∞ ρH (ũ, uδm ) = 0. By the continuity of the operator A : U ⊂ H �→
V ⊂ H̃ this implies:

lim
m→∞ ρH̃ (Aũ, Auδm ) = 0. (1.1.19)

By (1.1.18), limm→∞ ρH̃ (v, vδm ) = 0, where vδm := Auδm . With (1.1.19) this implies
that Aũ = v = Au. Taking now into account the fact that the operator A : U ⊂ H �→
V ⊂ H̃ is one-to-one, we find ũ = u. On the other hand, u = A−1v, uδm := A−1vδm ,
by definition, and we deduce from the second assertion of (1.1.17) that ρH (u, uδm ) ≥
ε. Taking a limit here asm → ∞we get: ρH (u, ũ) ≥ ε. This contradicts the previous
assertion ũ = u and completes the proof. �

Let us return now toDefinition1.1.1. The first condition (existence)means that the
operator A ∈ L(H, H̃) is surjective, the second condition (uniqueness) means that
this operator is injective, and the last condition means that the inverse operator A−1 :
H̃ �→ H is continuous. In terms of operator theory the first condition (existence) is
equivalent to the condition R(A) = H̃ , where R(A) is the range of the operator A.
The second condition (uniqueness) is equivalent to the conditionN (A) = {0}, where
N (A) := {u ∈ D(A) : Au = 0} is the kernel of the operator A. It is important, from
applications point of view, to note that in finite dimensional spaces the conditions
(p1) and (p2) are equivalent, as the Halmos’s theorem below shows.

Theorem 1.1.1 Let A : H �→ H be a linear operator defined on the finite dimen-
sional space H. Then the following assertions are equivalent:
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(H1) N (A) = {0}, i.e. A is injective;
(H2) A is surjective.

Hence, in a finite dimensional space the corresponding inverse problem Au = F has a
unique solution u = A−1F , for each F ∈ H , i.e. the inverse operator A−1 : H �→ H
exists (but may not be continuous!), if only one of the properties (H1)–(H2) holds.
However, in infinite-dimensional spaces these properties are not equivalent, as the
following example shows.

Example 1.1.2 The case when injectivity does not imply surjectivity

Let A : C([0, 1]) �→ C([0, 1]) be a linear operator defined by

(Au)(x) :=
∫ x

0
u(ξ)dξ, u ∈ C([0, 1]). (1.1.20)

Evidently, (Au)(0) = 0, for all u ∈ C([0, 1]), so the range R(A) of the operator
A is a proper subset of C([0, 1]), i.e. C([0, 1]) \ R(A) �= ∅. This means operator
A is not surjective. Obviously, this operator is injective, since differentiating the
equation Au = 0, where A is defined by (1.1.20), we get u(x) = 0. So, Au = 0
implies u(x) = 0 in C([0, 1]). �

In view of Hadamard’s definition, we can distinguish the following three types of
Hadamard’s ill-posedness:

(p1) Non-existence (A is not surjective);
(p2) Non-uniqueness (A is not injective);
(p3) Instability (the inverse operator A−1 is not continuous).

For an adequate mathematical model of a physical process it is reasonable to
require an existence of a solution in an appropriate class of functions, at least for an
exact data. With regard to the uniqueness of a solution, this is the most important
issue in inverse problems theory and is often not easy to prove. In the case when
the uniqueness can not be guaranteed by given data, one needs either to impose an
additional data or to restrict the set of admissible solutions using a-priori information
on the solution. In many applied problems the non-uniqueness can be used as an
advantage to obtain a desired solution among several ones. Nevertheless, the main
issue in inverse and ill-posed problems is usually stability, i.e. continuous dependence
of the solution on measured output. Moreover, this datum always contain random
noise, hence the equation Au = F cannot be satisfied exactly in general. Even if
the noise level in a measured output data is small, many algorithms developed for
well-posed problems do not work in case of a violation of the third condition (p3)
due to round-off errors, if they do not address the instability. An algorithm using
differentiationmay serve as an example to this, since differentiation has the properties
of an ill-posed problem. This is the reason why regularization methods play a central
role in the theory and applications of inverse and ill-posed problems to overcome the
above mentioned instabilities [23, 54].
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1.2 Continuity with Respect to Coefficients and Source:
Sturm-Liouville Equation

This introductory section familiarizes the reader with some aspects of continuous
dependence of the solution of the boundary problem (1.1.1) on the coefficients k ∈
K, q ∈ Q and the source function F ∈ L2(0, �). It is important to distinguish the
character of continuity with respect to different coefficients and also the source
function in inverse/identification problems, as well as in optimal control governed by
PDEs. Let us define the weak solution of problem (1.1.1) as the solution u ∈ V1(0, �)
of the integral identity:

∫ �

0
[k(x)u′v′ + q(x)uv]dx =

∫ �

0
f (x)vdx + ϕv(b), ∀v ∈ V1(0, �). (1.2.1)

Denote by C0,λ[0, �] the Hölder space of functions with exponent λ ∈ (0, 1], that
is, there exists a positive constant M such that

|u(x1) − u(x2)| ≤ M |x1 − x2|λ, for all x1, x2 ∈ [0, �].

Lemma 1.2.1 Let conditions (1.1.2) hold. Then there exists a unique solution u ∈
V1(0, �) of the boundary value problem (1.1.1). This solution is Hölder continuous
with exponent λ = 1/2, i.e. for all x1, x2 ∈ [0, �],

|u(x1) − u(x2)| ≤ �√
2 c0

[
‖F‖L2(0,�) + √

2/� |ϕ|
]
|x1 − x2|1/2. (1.2.2)

Moreover, the following estimate holds:

‖u‖V1(0,�) ≤ �2 + 2√
2 c0

[
‖F‖L2(0,�) + √

2/� |ϕ|
]

(1.2.3)

Proof We use the integral identity (1.2.1) to introduce the symmetric bilinear
a:V1(0, �) × V1(0, �) �→ R and linear b : V1(0, �) �→ R functionals:

a(u, v) := ∫ �

0 [k(x)u′v′ + q(x)uv]dx,
b(u) := ∫ �

0 F(x)vdx + ϕv(b), u, v ∈ V1(0, �).

By conditions (1.1.2), a(u, v) is a strongly positive bounded bilinear functional and
b(v) is a bounded linear functional. Then, by Variational Lemma (Theorem 1.1.1,
Sect. 1.1) there exists a unique solution u ∈ V1(0, �) of the variational problem

a(u, v) = b(v), ∀v ∈ V1(0, �).
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Let us prove now the Hölder continuity of the solution. For any x1, x2 ∈ [0, �] we
have:

|u(x1) − u(x2)| =
∣∣∣∫ x2

x1
u′(ξ)dξ

∣∣∣
≤

(∫ x2
x1

(u′(ξ))2dξ
)1/2 |x1 − x2|1/2 ≤ ‖u′‖L2(0,�) |x1 − x2|1/2.

(1.2.4)

To estimate the norm ‖u′‖L2(0,�) we use the energy identity

∫ �

0
[k(x)(u′(x))2 + q(x)(u(x))2]dx =

∫ �

0
F(x)udx + ϕu(b), u ∈ V1(0, �)

and the Poincaré inequality ‖u‖L2(0,�) ≤
(
�/

√
2
)

‖u′‖L2(0,�). We have:

‖u′‖2L2(0,�) ≤ 1

c0

∫ �

0
[k(x)(u′(x))2 + q(x)(u(x))2]dx

= 1

c0

[∫ �

0
F(x)udx + ϕ

∫ �

0
u′(x)dx

]

≤ 1

c0

[
‖F‖L2(0,�)‖u‖L2(0,�) + √

� |ϕ|‖u′‖L2(0,�)

]

≤ 1

c0

[
�√
2

‖F‖L2(0,�) + √
� |ϕ|

]
‖u′‖L2(0,�).

After dividing both sides by ‖u′‖L2(0,�) �= 0, we obtain

‖u′‖L2(0,�) ≤ 1

c0

[
�√
2

‖F‖L2(0,�) + √
� ϕ

]
, (1.2.5)

which with (1.2.4) leads the desired estimate (1.2.2).
To prove estimate (1.2.3) one needs to use in (1.2.5) the inequality ‖u′‖L2(0,�) ≥

β0‖u‖V1(0,�) with β0 = �/
√

�2 + 2, which follows from the Poincaré inequality. �

It follows from estimate (1.2.2) that the weak solution u ∈ V1(0, �) of the boundary
value problem (1.1.1) belongs to the Hölder space C0,λ[0, �], with exponent λ ∈
(0, 1/2]. Furthermore, estimate (1.2.3) means continuity of this weak solution with
respect to the source term F ∈ L2(0, �) and Neumann boundary data ϕ ∈ R.

The following theorem shows that the nature of continuity of the weak solution
u ∈ V1(0, �) of the boundary value problem (1.1.1), with respect to the coefficients
k(x) and q(x) is different.

Theorem 1.2.1 Let conditions (1.1.2) hold. Assume that {kn} ⊂ K, {qn} ⊂ Q and
{Fn} ⊂ L2(0, �) are the sequences of coefficients and source functions. Denote by
{un} ⊂ V1(0, �) the sequence of corresponding weak solutions, that is, for each
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n = 1, 2, 3, . . ., the function un(x) := u[x; kn, qn, Fn] is the weak solution of the
boundary value problem

{− (
kn(x)u′

n(x)
)′ + qn(x)un(x) = Fn(x), x ∈ (0, �),

un(0) = 0, (kn(x)u′
n(x))x=� = ϕ, ϕ ∈ R.

(1.2.6)

If

⎧⎨
⎩

1
kn(x)

⇀ 1
k(x) weakly in L2(0, �),

qn(x) ⇀ q(x) weakly in L2(0, �),
Fn(x) ⇀ f (x) weakly in L2(0, �), as n → ∞,

(1.2.7)

then the sequence of solutions of problem (1.2.6) converges to the solution u ∈
V1(0, �), u(x) := u[x; k, q, f ], of the boundary value problem (1.1.1), in the norm
of C0,λ, with 0 < λ < 1/2, as n → ∞.

Proof First we derive an integral representation for the solution of the boundary
value problem (1.1.1). To this aim we integrate equation (1.1.1) on [x, b] and use the
Neumann boundary condition (k(x)u′(x))x=b = ϕ, then integrate again both sides
on [a, x] and use the Dirichlet boundary condition u(a) = 0. This yields:

u(x) = ϕ
∫ x
0

dt
k(t) + ∫ x

0
P(t)
k(t) dt,

P(t) := ∫ �

t [F(ξ) − q(ξ)u(ξ)]dξ.
(1.2.8)

Now we use estimate (1.2.3) for the solution un of problem (1.2.6):

‖un‖V1(0,�) ≤ �2 + 2√
2c0

[
‖Fn‖L2(0,�) + √

2/� |ϕ|
]
. (1.2.9)

Since Fn ⇀ F weakly in L2(0, �), as n → ∞, due to the weak convergence criteria
[64] we have:

(a) {‖Fn‖0}, is uniformly bounded;
(b)

∫ x
0 Fn(τ )dτ → ∫ x

0 F(τ )dτ , for all x ∈ (0, �].

The uniform boundedness of the sequence ‖Fn‖0 with estimate (1.2.9) implies
the uniform boundedness of the sequence {un} ⊂ V1(0, �) in H 1-norm. Since every
bounded sequence in H 1(0, �) is a compact in C0,λ[0, �] for 0 < λ < 1/2, the
sequence {un} is a compact in C0,λ[0, �]. Hence we can extract a subsequence
{um} ⊂ V1(0, �) that converges to a function u ∈ C0,λ[0, �] in C0,λ-norm. Taking
into account that the convergence in C0,λ[0, �] is a uniform convergence, we have
um(x) → u(x) uniformly, for all x ∈ [0, �], as n → ∞.

We prove finally that the limit function u(x) is the solution of the boundary value
problem (1.1.1) corresponding to the limit functions k(x), q(x) and F(x) in (1.2.7).
The integral representation (1.2.8) for um ∈ V1(0, �), m = 1, 2, 3, . . ., yields:
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um(x) = ϕ
∫ x
0

dt
km (t) + ∫ x

0
Pm (t)
km (t) dt,

Pm(t) := ∫ �

t [Fm − qmum]dξ.
(1.2.10)

According to the weak convergence Fm(t) ⇀ F(t) in L2(0, �) we have:

∫ b

t
Fm(t)dt →

∫ b

t
F(t)dt, for all t ∈ [0, �], as m → ∞. (1.2.11)

Due to the fact that qm(ξ) ⇀ q(ξ) weakly in L2(0, �) and um(ξ) → u(ξ), in C0,λ-
norm, we conclude qm(ξ)um(ξ) ⇀ q(ξ)u(ξ) weakly in L2(0, �). Hence

∫ b

t
qm(ξ)um(ξ)dt →

∫ b

t
q(ξ)u(ξ)dt, ∀t ∈ [0, �], as n → ∞,

which, with (1.2.11), implies Pm(t) → P(t), as n → ∞. Now we prove that

∫ x

0

Pm(t)

km(t)
dt →

∫ x

0

P(t)

k(t)
dt, ∀x ∈ [0, �], as n → ∞. (1.2.12)

Indeed,

∣∣∣∫ x
0

Pm (t)
km (t) dt − ∫ x

0
P(t)
k(t) dt

∣∣∣
≤

∣∣∣∫ x
0

Pm (t)−P(t)
km (t) dt

∣∣∣ +
∣∣∣∫ x

0

[
1

km (t) − 1
k(t)

]
P(t)dt

∣∣∣
≤ 1

c0

∫ x
0 |Pm(t) − P(t)| dt +

∣∣∣∫ x
0

[
1

km (t) − 1
k(t)

]
P(t)dt

∣∣∣ , c0 > 0.

The first right hand side term tends to zero due to the above convergence Pm(t) →
P(t) in (1.2.12) as m → ∞, and the second term also tends to zero due to the weak
convergence criteria. Therefore,

∫ x
0

dx
km (x) → ∫ x

0
dx
k(x) ,∫ x

0
Pm (t)
km (t) dt → ∫ x

0
P(t)
k(t) dt, as n → ∞,

for all x ∈ [0, �], and the function um(x), represented by (1.2.10) converges to the
solution u(x) represented by the integral representation (1.2.8), for all x ∈ [0, �],
as m → ∞. Since the problem (1.1.1) has a unique solution, the sequence {un} ⊂
V1(0, �) converges to the solution u(x) of problem (1.1.1), for all x ∈ [0, �], as
n → ∞, and we have the proof. �

Theorem 1.2.1 clearly illustrates that the nature of convergence of the leading
coefficient k(x) differs from the nature of convergence of the sink term q(x). A
necessary condition for the convergence of the sequence of solutions {un} is the
convergence of the sequence 1/kn(x) ⇀ 1/k(x), but not the convergence of the
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sequence of coefficients kn(x) ⇀ k(x), while in case of the sink term q(x), the
necessary condition is the convergence of the sequence of coefficients qn(x) ⇀ q(x).
Remark that we met the term 1/k(x) in the Example 1.1.1.

1.3 Why a Fredholm Integral Equation of the First
Kind Is an Ill-Posed Problem?

Consider the problem of solving the Fredholm Ill-Posed integral equation of the first
kind

∫ 1

0
K (x, y)u(y)dy = F(x), x ∈ [0, 1], (1.3.1)

where u ∈ C[0, 1] is the unknown function, the kernel K : [0, 1] × [0, 1] → R is
a continuous function and F(x) is a given function in C[0, 1]. It is known that
if D := {v ∈ C[0, 1] : ‖v‖C[0,1] ≤ M, M > 0}, then the linear continuous operator
A : D ⊂ C[0, 1] �→ C[0, 1], defined as the integral operator

(Au) (x) :=
∫ 1

0
K (x, y)u(y)dy, (1.3.2)

is a linear compact operator fromC[0, 1] toC[0, 1], i.e. transforms each bounded set
inC[0, 1] to a relatively compact set inC[0, 1] (see, for instance, the reference [103]).
Let us show that the problem (1.3.1) is ill-posed in sense of the third Hadamard’s
condition (p3).

Let u := u(x; F) be a solution of (1.3.1) for the given F ∈ C[0, 1]. To show that
the dependence u(· ; F) is not continuous in C[0, 1], we define the sequence of
continuous functions

εn(x) =
∫ 1

0
K (x, y) sin(nπy)dy, n = 1, 2, 3, . . . . (1.3.3)

By the continuity of the kernel K (x, y), ‖εn‖C[0,1] → 0, as n → ∞. Now we define
the “perturbed” source functions Fn(x) = F(x) + εn(x), n = 1, 2, 3, . . . . Then the
function un(x) = u(x) + sin(nπy) will be a solution of the “perturbed” problem

∫ 1

0
K (x, y)un(y)dy = Fn(x), x ∈ [0, 1],

for each n = 1, 2, 3, . . . . Evidently, the norm ‖F − Fn‖C[0,1] = ‖εn‖C[0,1] tends
to zero, as n → ∞, although ‖un − u‖C[0,1] = ‖ sin(nπy)‖C[0,1] = 1, for all n =
1, 2, 3, . . .. This shows that if the Fredholm operator (1.3.2) is defined as A :
C[0, 1] �→ C[0, 1], then problem (1.3.1) is ill-posed.
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Note that the same conclusion is still hold, if K ∈ L2((0, 1) × (0, 1)) and the
Fredholm operator (1.3.2) is defined as A : L2(0, 1) �→ L2(0, 1). In this case the
integral (1.3.3) tends to zero as n → ∞, by the Riemann-Lebesgue Lemma. �

To answer the question “why the problem (1.3.1) is ill-posed?” we need to study
this problem deeper, by arriving to the physical meaning of the mathematical model.

Example 1.3.1 Relationship between the Fredholm integral equation and the differ-
ential problem.

Let us analyze again problem (1.3.1) assuming that the kernel is given by the formula

K̊ (x, y) =
{

(1 − x)y, 0 ≤ y ≤ x,
x(1 − y), x ≤ y ≤ 1.

(1.3.4)

It is easy to verify that

∫ 1

0
K̊ (x, y) sin(nπy) dy = 1

(nπ)2
sin(nπx), n = 1, 2, . . . . (1.3.5)

Equation (1.3.5) means that the numbers {(nπ)−2}∞n=1 are eigenvalues of the integral
operator

( Åu)(x) :=
∫ 1

0
K̊ (x, y)u(y)dy, (1.3.6)

and {√2 sin(nπx)}∞n=1 are the orthonormal eigenfunctions. Using (1.3.4) and (1.3.5)
we can define the Fourier Sine series representation for the kernel K̊ (x, y):

K̊ (x, y) = 2
∞∑
n=1

sin(nπx) sin(nπy)

(nπ)2
. (1.3.7)

To solve now the Fredholm integral equation

( Åu)(x) :=
∫ 1

0
K̊ (x, y)u(y)dy = F(x), x ∈ [0, 1], (1.3.8)

we use the Fourier Sine series for the functions F(x) and u(x):

F(x) = √
2

∞∑
n=1

Fn sin(nπx), u(x) = √
2

∞∑
n=1

un sin(nπx),
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where

Fn = √
2

∫ 1

0
F(ξ) sin(nπξ)dξ, un = √

2
∫ 1

0
u(ξ) sin(nπξ)dξ

are the Fourier coefficients. Substituting these in (1.3.8) and using (1.3.5) we deduce:

∞∑
n=1

un
(nπ)2

sin(nπx) =
∞∑
n=1

Fn sin(nπx).

This implies:

un = (nπ)2Fn, n = 1, 2, . . . . (1.3.9)

The relationship (1.3.9) can be treated as an input-output relationship for problem
(1.3.8).

Thus, the Fourier series solution of the Fredholm integral equation (1.3.8) with
the kernel given by (1.3.4) is the function

u(x) = √
2

∞∑
n=1

(nπ)2Fn sin(nπx), x ∈ [0, 1], (1.3.10)

if the series converges in the considered solution set C[0, 1]. However, there are
very simple cases where this fails to happen, even in L2[0, 1]. Indeed, let F(x) ≡ 1,
x ∈ [0, 1]. Calculating the Fourier coefficients Fn we get:

Fn = √
2

[1 − (−1)n]
nπ

, n = 1, 2, 3, . . . .

This means the series (1.3.10) fails to converge. �
The above example tells us that problem (1.3.1) or (1.3.8)may not have a solution

for each function F(x) from C[0, 1].
To understand the reason of this phenomenon, we interchange roles of u(x) and

F(x) in problem (1.3.8), assuming now that F(x) is the unknown function and u(x)
is the given one. Differentiating the left hand side of (1.3.8) and taking into account
(1.3.4), we get

d2

dx2

∫ 1

0
K̊ (x, y)u(y)dy = d

dx

(
−

∫ x

0
yu(y)dy +

∫ 1

x
(1 − y)u(y)dy

)

= −u(x).

Then we obtain the following formal equation −F ′′(x) = u(x), x ∈ (0, 1) with
respect to the unknown function F(x). Note that in terms of problem (1.3.8) this
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equation, in particular, implies a necessary condition for the existence of a solution
in C[0, 1]: the function F(x) should belong to the space C2[0, 1].

Clearly, function F(x) should also satisfy the boundary conditions F(0) =
F(1) = 0, as the integral Eq. (1.3.8) with the kernel given by formula (1.3.7) shows.
Thus, if we assume in (1.3.8) that F(x) is unknown function and u(x) is the given
function, then we conclude that F(x) is the solution to the boundary value problem

{−F ′′(x) = u(x), x ∈ (0, 1),
F(0) = F(1) = 0.

(1.3.11)

Evidently, K̊ (x, y) is theGreen’s function for the operator−d2/dx2 under the bound-
ary conditions (1.3.11).

Let us compare now problems (1.3.8) and (1.3.11), taking into account the swap-
ping of the functions u(x) and F(x). It follows from the above considerations that,
problems (1.3.8) and (1.3.11) can be defined as inverse to each other, as stated in
[53]. Then, it is natural to ask the question: which problem is the direct (i.e. original)
problem, and which problem is the inverse problem? To answer this question, we
need to go back to the physical model of the problem. The boundary value problem
(1.3.11) is the simplest mathematical model of deflection of a string, occupying the
interval [0, 1]. The Dirichlet conditions in (1.3.11) mean that the string is clamped at
its end points. In this model, the function u(x), as a given right hand side of the differ-
ential Eq. (1.3.11), represents a given pressure, and the function F(x), as a solution
of the boundary value problem (1.3.11), represents the corresponding deflection. The
unique (classical) solution of the two-point boundary value problem (1.3.11) is the
function

F(x) =
∫ 1

0
K̊ (x, y)u(y)dy, x ∈ [0, 1], (1.3.12)

where the kernel K̊ (x, y) is the Green’s function defined by (1.3.4). Hence each
pressure u ∈ C[0, 1], defines uniquely the deflection function F ∈ C2[0, 1], F(0) =
F(1) = 0. In other words, the boundary value problem (1.3.11) is awell-posed prob-
lem, with the unique solution (1.3.12). On the other hand, as we have seen above,
the integral equation (1.3.8) may not have a solution for each continuous function
F(x) (deflection). The physical interpretation is clear: each (admissible) pressure
generates a unique deflection, but an arbitrary function cannot be regarded as a
deflection. Applied to the integral equation (1.3.8) this means that in order to F(x)
be a possible defection it needs, at least, to satisfy the rigid clamped boundary con-
ditions F(0) = F(1) = 0 and to have continuous second derivative. This is a reason,
in the language of the physical model, why a Fredholm integral equation of the first
kind is an ill-posed problem.

To finish the above analysis, now we return to the integral equation (1.3.8) with
the kernel (1.3.4) and ask: what type of functions F(x) are admissible in order to get
a convergent series (1.3.10)?
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Example 1.3.2 Existence and non-existence of a solution of the Fredholm integral
equation.

The solution of the integral equation (1.3.8) with the kernel (1.3.4) is the function
u(x) given by series (1.3.10). First, we assume that F(x) in (1.3.8) is given by
formula

F(x) =
{
x/2, 0 ≤ x ≤ 1/2,
(1 − x)/2, 1/2 < x ≤ 1.

(1.3.13)

Note that this function is continuous, but not continuously differentiable. Calculating
the Fourier sine coefficients we get:

Fn =
√
2

(nπ)2
sin

(nπ

2

)
=

√
2

(nπ)2

{
0, n = 2k,
(−1)n−1, n = 2k − 1, k = 1, 2, 3, . . . .

Substituting this in (1.3.10) we obtain the series solution of problem (1.3.8):

u(x) = 2
∞∑
n=1

(−1)n−1 sin [(2n − 1)πx] , x ∈ [0, 1]. (1.3.14)

This is exactly the Fourier sine series expansion of Dirac delta function δ(x − 1/2),
which not only does not satisfy the above differentiability conditions, but also is
not even a regular generalized function. Hence, the function (1.3.14) corresponding
to F(x), given by formula (1.3.13), is not regarded as a solution of the Fredholm
integral equation (1.3.8) in the above mentioned sense.

Let us use in (1.3.8) more smooth input data:

F(x) = x(1 − x)/2, x ∈ [0, 1], (1.3.15)

restricting the class of functions {F(x)}. Evidently, this function has continuous
derivatives up to order 2 and satisfies the conditions F(0) = F(1) = 0. The Fourier
sine coefficients of function (1.3.15) are

Fn = √
2

2[1 − (−1)n]
(nπ)3

, n = 1, 2, 3, . . . .

Substituting this in (1.3.10) we obtain the series solution:

u(x) = 2

π

∞∑
n=1

[1 − (−1)n]
n

sin(nπx) = 4

π

∞∑
m=1

sin[(2m − 1)πx]
2m − 1

, x ∈ [0, 1].

This is the Fourier sine series expansion of the function u(x) ≡ 1, x ∈ [0, 1]. Hence,
for the smooth enough function F(x) = x(1 − x)/2, the solution of the Fredholm
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integral equation of the first kind with the kernel (1.3.4), is the function u(x) ≡ 1,
x ∈ [0, 1]. �

Let us return now to the last two examples and try to reformulate in terms of
compact operators the above conclusion “every (admissible) pressure generates a
deflection, but an arbitrary function cannot be regarded as a deflection”, obtained
in terms of a physical model.

Definition 1.3.1 Let B and B̃ benormed spaces, and A : B �→ B̃ be a linear operator.
A is called a compact operator if the set {Au : ‖u‖B ≤ 1} ⊂ B̃ is a pre-compact, i.e.
has compact closure in B̃.

This definition is equivalent to the following one: for every bounded sequence
{un} ⊂ B, the sequence of images {Aun} ⊂ B̃ has a subsequence which converges
to some element of B̃. Compact operators are also called completely continuous
operators.

The lemma below explains the above conclusion, in terms of compact opera-
tors. It simply asserts that any neighborhood of an arbitrary element F ∈ R(A)

from the range of a linear compact operator A might not have a preimage in
H . Remember that if K (x, y) in (1.3.1) is a bounded Hilbert-Schmidt kernel,
i.e. if K ∈ L2 ((0, 1) × (0, 1)), then the integral operator A : L2(0, 1) �→ L2(0, 1),
defined by (1.3.2), is a compact operator.

Lemma 1.3.1 Let A : D(A) ⊂ H �→ H̃ bea compact operator between two infinite-
dimensional Hilbert spaces H and H̃ , with bounded domain D(A). Assume that
f ∈ R(A) is an arbitrary element from the range R(A) ⊂ H̃ of the operator A.
Then for any ε > 0 there exists an element f0 ∈ Vε( f ) := {g ∈ H̃ : ‖g − f ‖H̃ ≤ ε}
such that f0 /∈ R(A).

Proof Let f ∈ R(A) be an arbitrary element. To prove the lemma assume on the
contrary that there exists ε0 > 0 such that Vε0( f ) ⊂ R(A). Let { fi }∞i=1 ⊂ H̃ be an
orthonormal basis. We define the sequence {gi }∞i=1 ⊂ H̃ , with gi := f + ε0 fi/2.
Evidently, {gi }∞i=1 ⊂ Vε0( f ), since ‖gi − f ‖H̃ = (ε0/2)‖ fi‖H̃ = ε0/2 < ε0, which
means the sequence {gi }∞i=1 is bounded in H̃ . However, for all i, j = 1,∞, ‖gi −
g j‖H̃ = ε0/

√
2 and this sequence does not contain any Cauchy subsequence. Hence,

the set Vε0( f ) ⊂ R(A) is not a precompact. On the other hand, D(A) ⊂ H is a
bounded set and A is a compact operator. Hence, as an image Vε0( f ) := A(D0) of
a bounded set D0 ⊂ D(A), the set Vε0( f ) ⊂ R(A) needs to be a precompact. This
contradiction completes the proof of the lemma. �

Corollary 1.3.1 Let conditions of Lemma 1.3.1 hold. Assume, in addition, that A :
D(A) ⊂ H �→ H̃ is a linear injective operator. Then the inverse operator A−1 :
R(A) �→ D(A) is discontinuous, that is, the problem Au = f , u ∈ D, is ill-posed.

Proof Assume on the contrary that the inverse operator A−1 : R(A) �→ D(A) is
continuous. Then, as an image A−1(R(A)) := D(A) (under the inverse operator
A−1) of the compact set R(A), the set D(A) needs to be compact, while it is a
bounded set. �
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These results give us some insights into the structure and dimension of the range
R(A) of a linear compact operator. In addition to above obtained result that the
problem (1.3.1) is ill-posed in sense of the third Hadamard’s condition (p3), we
conclude from Corollary 1.3.1 that this problem is ill-posed also in sense of the first
Hadamard’s condition (p1). The reason is that, the rangeR(A) of a linear compact
operator is not dense everywhere, by the assertion of Lemma 1.3.1. We will show in
the Appendix A that the range R(A) of a linear compact operator A, defined on a
Hilbert space H , is “almost finite-dimensional”, i.e. can be approximated to any given
accuracy by a finite dimensional subspace in R(A). Note that, if the range R(A) of
a bounded linear operator is finite dimensional, then it is a compact operator. This
follows from the Heine-Borel Theorem, since the closure A(D) ⊂ H̃ of the image
A(D) of a bounded set D ⊂ H is closed and bounded in the finite dimensional
subspace R(A) ⊂ H̃ , so, is compact.

Finally, note thatLemma1.3.1 also asserts that if a compact operator has a bounded
inverse, then H must be finite dimensional. Then it can be shown that, if H is infinite
dimensional, then there is no injective compact operator from H onto H̃ . Details of
these assertions will be analyzed in the Appendix A.
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Chapter 2
Functional Analysis Background of Ill-Posed
Problems

The main objective of this chapter is to present some necessary results of functional
analysis, frequently used in study of inverse problems. For simplicity, we will derive
these results in Hilbert spaces. Let H be a vector space over the field of real (R) or
complex (C) numbers. Recall that the mapping (·, ·)H defined on H × H is called an
inner product (or scalar product) of two elements of H , if the following conditions
are satisfied:

(i1) (u1 + u2, v)H = (u1, v)H + (u2, v)H , ∀u1, u2, v ∈ H ;
(i2) (αu, v)H = α(u, v)H , ∀α ∈ C, ∀u, v ∈ H ;
(i3) (u, v)H = (v, u)H , ∀u, v ∈ H ;
(i4) (u, u)H ≥ 0, ∀u ∈ H and (u, u)H = 0 iff u = 0.

Through the following, we will omit the subscript H in the scalar (dot) product
and the norm whenever it is clear from the text.

The vector space H together with the inner product is called an inner product
space or a pre-Hilbert space. The norm in a pre-Hilbert space is defined by the above
introduced scalar product: ‖u‖H := (u, u)1/2, u ∈ H . Hence a pre-Hilbert space H
is a normed space. If, in addition, a pre-Hilbert space is complete, it is called a Hilbert
space. Thus, a Hilbert space is a Banach space, i.e. complete normed space, with the
norm defined via the scalar product.

AHilbert space is called infinite dimensional (finite dimensional) if the underlying
vector space is infinite dimensional (finite dimensional). The basic representative of
infinite dimensional space Hilbert in the weak solution theory of PDEs is the space
of square integrable functions

L2(a, b) := {u : (a, b) �→ R :
∫ b

a
u2(x)dx < +∞},

with the scalar product
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(u, v)L2(a,b) :=
∫ b

a
u(x)v(x)dx, u, v ∈ L2(a, b).

Afinite dimensional analogue of this space of square-summable sequences inRn:

l2 := {x := (x1, x2, ..., xn) ∈ R
n :

n∑
k=1

x2k < +∞},

with the scalar product

(x, y)l2 :=
n∑

k=1

xk yk, x, y ∈ R
n .

2.1 Best Approximation and Orthogonal Projection

Let H be an inner product space. The elements u, v ∈ H are called orthogonal, if
(u, v) = 0. This property is denoted by u ⊥ v. Evidently, 0 ⊥ v, for any v ∈ H ,
since (0, v) = 0, ∀v ∈ H . LetU ⊂ H be a non-empty subset and u ∈ H an arbitrary
element. If (u, v) = 0 for all v ∈ U , then the element u ∈ H is called orthogonal to
the subset U and is denoted by u ⊥ U . The set of all elements u ∈ H orthogonal to
U ⊂ H is called an orthogonal complement of U and is denoted by U⊥:

U⊥ := {u ∈ H : (u, v) = 0, ∀v ∈ U }. (2.1.1)

The subsetsU, V ⊂ H are called orthogonal subsets of H if (u, v) = 0 for all u ∈ U
and v ∈ V . This property is denoted byU ⊥ V . Evidently, ifU ⊥ V , thenU ∩ V =
{0}.
Theorem 2.1.1 Let U ⊂ H be a subset of an inner product space H. Then an
orthogonal complement U⊥ of U is a closed subspace of H. Moreover, the following
properties are satisfied:

(p1) U ∩U⊥ ⊂ {0} and U ∩U⊥ = {0} iff U is a subspace;
(p2) U ⊂ (

U⊥)⊥ =: U⊥⊥,
(
U⊥)⊥ := {u ∈ H : (u, v) = 0, ∀v ∈ U⊥};

(p3) If U1 ⊂ U2 ⊂ H, then U⊥
2 ⊂ U⊥

1 .

Proof Evidently,αu + βv ∈ U⊥, for allα, β ∈ C and u, v ∈ U , by the above defin-
ition of the scalar product: (αu + βv,w) = α(u, w) + β(v,w) = 0, for all w ∈ U .
This implies that U⊥ is a subspace of H . It is easy to prove, by using continuity of
the scalar product, that if {un} ⊂ U⊥ and un → u, as n → ∞, then u ∈ U⊥. So,U⊥
is closed. To prove (p1), we assume that there exists an element u ∈ U ∩U⊥. Then,
by definition (2.1.1) ofU⊥, (u, u) = 0, which implies u = 0. HenceU ∩U⊥ ⊂ {0}.
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If, in addition, U is a subspace of H , then 0 ∈ U and it yields U ∩U⊥ = {0}. To
prove (p2) we assume in contrary, that there exists an element u ∈ U such that
u /∈ (

U⊥)⊥
. This means an existence of such an element v ∈ U⊥ that (u, v) �= 0. On

the other hand, for all u ∈ U and v ∈ U⊥, we have (u, v) = 0, which is a contradic-
tion. HenceU ⊂ (

U⊥)⊥
. Finally, to prove (p3), let v ∈ U⊥

2 be an arbitrary element.
Then (u, v) = 0, for all u ∈ U2. Since U1 ⊂ U2, this holds for all u ∈ U1 as well.
Hence for any element v ∈ U⊥

2 , the condition (u, v) = 0 holds for all u ∈ U1. This
implies, by the definition, that v ∈ U⊥

1 , which completes the proof. �

Definition 2.1.1 (Best approximation) Let U ⊂ H be a subset of an inner product
space H and v ∈ H be a given element. If

‖v − u‖H = inf
w∈U ‖v − w‖H , (2.1.2)

then u ∈ U is called the best approximation to the element v ∈ H with respect to the
set U ⊂ H .

The right hand side of (2.1.2) is a distance between a given element v ∈ H and the
set U ⊂ H . Hence, the best approximation is an element with the smallest distance
to the set U ⊂ H .

This notion plays a crucial role in inverse problems theory and applications, since
a measured output data can only be given with some measurement error. First we
will prove that if U ⊂ H is a closed linear subspace, then the best approximation
is determined uniquely. For this aim we will use the main theorem on quadratic
variational problems and its consequence, called perpendicular principle [103].

Theorem 2.1.2 Let a : H × H �→ R be a symmetric, bounded, strongly positive
bilinear form on a real Hilbert space H, and b : H �→ R be a linear bounded func-
tional on H. Then
(i) The minimum problem

J (v) = min
w∈H J (w), J (w) := 1

2
a(w,w) − b(w) (2.1.3)

has a unique solution v ∈ H.
(ii) This minimum problem is equivalent to the followig variational problem: Find
v ∈ H such that

a(v,w) = b(w), ∀w ∈ H. (2.1.4)

We use this theorem to prove that in a closed linear subspace U of a real or
complex Hilbert space H , the best approximation is uniquely determined.

Theorem 2.1.3 LetU bea closed linear subspaceof aHilbert space H andv ∈ H be
a given element. Then the best approximation problem (2.1.2) has a unique solution
u ∈ U. Moreover v − u ∈ U⊥.
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Proof We rewrite the norm ‖v − u‖H as follows:

‖v − u‖H := (v, v) − (v, u) − (u, v) + (u, u)

= a(v, v) + 2

[
1

2
a(u, u) − b(u)

]
, (2.1.5)

where

a(u, w) := Re(u, w), b(u) := 1

2
[(v, u) + (u, v)] = Re(v, u)

The right hand side of (2.1.5) shows that the best approximation problem (2.1.5)
is equivalent to the variational problem (2.1.3) with the above defined bilinear and
linear forms. Then it follows from Theorem 2.1.2 that if H is a real Hilbert space,
then there exists a unique best approximation v ∈ U to the element u ∈ H .

If H is a complex Hilbert space, then we can introduce the new scalar product
(v,w)∗ := Re(v,w), v,w ∈ H and again apply Theorem 2.1.2.

We prove now that if u ∈ U is the best approximation to the element v ∈ H , then
v − u ⊥ U . Indeed, it follows from (2.1.2) that

‖v − u‖2H ≤ ‖v − (u + λw)‖2H , ∀λ ∈ C, w ∈ U.

This implies,

(v − u, v − u) ≤ (v − u, v − u) − λ(v − u, w) − λ(w, v − u) + |λ|2(w,w)

or

0 ≤ −λ(v − u, w) − λ(w, v − u) + |λ|2(w,w).

Assume that v − u �= 0, w �= 0. Then taking λ = (w, v − u)/‖w‖2 we obtain: 0 ≤
−|(v − u, w)|2, which means that (v − u, w) = 0, ∀w ∈ U . Note that this remains
true also if v − u = 0. �

Corollary 2.1.1 (Orthogonal decomposition) Let U be a closed linear subspace of
a Hilbert space H . Then there exists a unique decomposition of a given arbitrary
element v ∈ H of the form

v = u + w, u ∈ U, w ∈ U⊥. (2.1.6)

Existence of this orthogonal decomposition follows from Theorem 2.1.3. We
prove the uniqueness. Assume, in contrary, that there exists another decomposition
of v ∈ H such that

v = u1 + w1, u1 ∈ U, w1 ∈ U⊥.
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Since U is a linear subspace of H , we have u − u1 ∈ U , w − w1 ∈ U⊥, and

(u − u1) + (w − w1) = 0.

Multiplying scalarly both sides by u − u1 we get

(u − u1, u − u1) + (w − w1, u − u1) = 0,

which implies u = u1, since the second term is zero due tow − w1 ∈ U⊥. In a similar
way we conclude that w = w1. This completes the proof. �

The orthogonal decomposition (2.1.6) can also be rewritten in terms of the sub-
spaces U and U⊥ as follows:

H = U ⊕U⊥.

Example 2.1.1 Let H := L2(−1, 1), U := {u ∈ L2(−1, 1) : u(−x) = u(x), a.e.
in (−1, 1)} be the set of even functions and U⊥ := {u ∈ L2(−1, 1) : u(−x) =
−u(x), a.e. in (−1, 1)} be the set of odd functions. Then L2(−1, 1) = U ⊕U⊥.
Remark that for anyv ∈ L2(−1, 1),v(x) = [v(x) + v(−x)]/2 + [v(x) − v(−x)]/2.

Corollary 2.1.1 shows that there exists a mapping which uniquely transforms each
element v ∈ H to the element u of a closed linear subspace U of a Hilbert space H .
This assertion is called Orthogonal Projection Theorem.

Definition 2.1.2 The operator P : H �→ U , with Pv = u, in the decomposition
(2.1.6) which maps each element v ∈ H to the element u ∈ U is called the pro-
jection operator or orthogonal projection.

Using this definition, we may rewrite the best approximation problem (2.1.2) as
follows:

‖v − Pv‖H = inf
w∈U ‖v − w‖H .

We denote byN (P) := {v ∈ H : Pv = 0} andR(P) := {Pv : v ∈ H} the null-
space and the range of the projection operator P , respectively. The theorem below
shows that the orthogonal projection P : H �→ U is a linear continuous self-adjoint
operator.

Theorem 2.1.4 The orthogonal projection P : H �→ U defined from Hilbert space
H onto the closed subspace U ⊂ H is a linear continuous self-adjoint operator with
P2 = P and ‖P‖ = 1, for U �= {0}. Conversely, if P : H �→ H is a linear continu-
ous self-adjoint operator with P2 = P, then it defines an orthogonal projection from
H onto the closed subspace R(P).

Proof It follows from (2.1.6) that

‖v‖2 := ‖u + w‖2 = ‖u‖2 + ‖w‖2,
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since (u, w) = 0, by u ∈ U and w ∈ U⊥. This implies ‖Pv‖ ≤ ‖v‖, Pv := u for
all v ∈ H . In particular, for v ∈ U ⊂ H we have Pv = v, which means ‖P‖ = 1.
We prove now that P is self-adjoint. Let vk = uk + wk , uk ∈ U ,wk ∈ U⊥, k = 1, 2.
Multiplying both sides of v1 = u1 + w1 by u2 and both sides of v2 = u2 + w2 by
u1, then taking into account (uk, vm) = 0, k,m = 1, 2, we conclude

(v1, u2) = (u1, u2), (v2, u1) = (u2, u1).

This implies (u1, v2) = (u1, u2) = (v1, u2). Using the definition Pvk := uk we
deduce:

(Pv1, v2) := (v1, Pv2), ∀v1, v2 ∈ H,

i.e. the projection operator P is self-adjoint. Assuming now v = u ∈ U ⊂ H in
(2.1.6) we have: u = u + 0, where 0 ∈ U⊥. Then Pu = u, and for any v ∈ H we
have P2v = P(Pv) = Pu = u = Pv. Hence P2v = Pv, for all v ∈ H .

We prove now the second part of the theorem. Evidently,R(P) := {Pv : v ∈ H}
is a linear subspace. We prove that the range of the projection operator R(P) is
closed. Indeed, let {un} ⊂ R(P), such that un → u, as n → ∞. Then there exists
such an element vn ∈ H that un = Pvn . Together with the property P2vn = Pvn this
implies: Pun = P2vn = Pvn = un . Hence, Pun = un for all un ∈ R(P). Letting to
the limit and using the continuity of the operator P , we obtain:

u = lim
n→∞ un = lim

n→∞ Pun = Pu,

i.e. Pu = u, whichmeans u ∈ R(P). ThusR(P) is a linear closed subspace of H and
all its elements are fixed points of the operator P , that is, Pu = u for all u ∈ R(P).
On the other hand, P is a self-adjoint operator with P2 = P , by the asumption. Then
for any v ∈ H ,

(Pv, (I − P)v) = (Pv, v) − (Pv, Pv) = (Pv, v) − (P2v, v) = 0.

Since v ∈ H is an arbitrary element, the orthogonality (Pv, (I − P)v) = 0 means
that (I − P)v ∈ R(P)⊥. Then the identity

v = Pv + (I − P)v, ∀v ∈ H

with Corollary 2.1.1 implies that P is a projection operator, since Pv ∈ R(P) ⊂ H
and (I − P)v ∈ R(P)⊥. �

Remark 2.1.1 Based on the properties of the orthogonal projection P : H �→ H , we
conclude that the operator I − P : H �→ H is also an orthogonal projection. Indeed,
(I − P)2 = I − 2P + P2 = I − P .
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Remark 2.1.2 Let us define the set M := {u ∈ H : Pu = u}, i.e. the set of fixed
points of the orthogonal projection P . It follows from the proof of Theorem 2.1.4
that M = R(P). Similarly,R(I − P) = N (P).

Some other useful properties of the projection operator P : H �→ H are summa-
rized in the following corollary.

Corollary 2.1.2 Let P : H �→ H be an orthogonal projection defined on a Hilbert
space H. Then the following assertions hold:
(p1) N (P) and R(P) are closed linear subspaces of H.
(p2) Each element v ∈ H can be written uniquely as the following decomposition:

v = u + w, u ∈ R(P), w ∈ N (P). (2.1.7)

Moreover,

‖v‖2 = ‖u‖2 + ‖w‖2. (2.1.8)

(p3) N (P) = R(P)⊥ and R(P) = N (P)⊥.

Proof The assertions (p1)−−(p2) follow from Corollary 2.1.1 and Theorem 2.1.4.
We prove (p3). Evidently, N (P) ⊥ R(P) and N (P) ⊂ R(P)⊥. Hence to prove
the first part of the assertion (p3) we need to show that R(P)⊥ ⊂ N (P). Let v ∈
R(P)⊥ ⊂ H . Then, there exist such elementsu ∈ R(P),w ∈ N (P) thatv = u + w,
according to (2.1.7). Multiplying both sides by an arbitrary element ṽ ∈ R(P) we
obtain: (v, ṽ) = (u, ṽ) + (w, ṽ). The left hand side is zero, since v ∈ R(P)⊥. Also,
(w, ṽ) = 0, by N (P) ⊥ R(P). Thus, (u, ṽ) = 0, for all ṽ ∈ R(P). But u ∈ R(P).
This implies u = 0, and as a result, v = 0 + w, wherew ∈ N (P). Hence v ∈ N (P).

The second part of the assertion (p3) can be proved similarly. �

We illustrate the above results in the following example.

Example 2.1.2 Fourier Series and Orthogonal Projection.

Let {ϕn}∞n=1 be an orthonormal basis of an infinite-dimensional real Hilbert space
H . Then any element u ∈ H can be written uniquely as the following convergent
Fourier series:

u =
∞∑
n=1

(u,ϕn)ϕn ≡
N∑

n=1

(u,ϕn)ϕn +
∞∑

n=N+1

(u,ϕn)ϕn.

Let us consider the finite system {ϕn}Nn=1 which forms a basis for the finite-
dimensional Hilbert subspace HN ⊂ H . We define the operator P : H �→ HN as
follows:

Pu :=
N∑

n=1

(u,ϕn)ϕn, u ∈ H. (2.1.9)
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Evidently, P is a linear bounded operator. Moreover, P2 = P . Indeed,

P2u := P

(
N∑

n=1

(u,ϕn)ϕn

)
=

N∑
m=1

(
N∑

n=1

(u,ϕn)ϕn,ϕm

)
ϕm

=
N∑

m=1

(u,ϕm)ϕm = Pu,

by (ϕn,ϕm) = δn,m . Thus, P : H �→ HN , defined by (2.1.9), is a projection operator
from the infinite-dimensional Hilbert space H onto the finite-dimensional Hilbert
space HN ⊂ H , with R(P) = HN . To show the orthogonality of R(P) and N (P),
let u ∈ R(P) and v ∈ N (P) be arbitrary elements. Then Pu = u and

(v, u) = (v, Pu) =
(
v,

N∑
n=1

(u,ϕn)ϕn

)
=

N∑
n=1

(u,ϕn)(v,ϕn)

=
(

N∑
n=1

(v,ϕn)ϕn, u

)
= (Pv, u).

But Pv = 0, due to v ∈ N (P). Hence (v, u) = 0, for all u ∈ R(P) and v ∈ N (P),
which implies R(P) ⊥ N (P).

Now we show the projection error, defined as

u − Pu :=
∞∑

n=N+1

(u,ϕn)ϕn,

is orthogonal to HN . Let v ∈ HN be any element. Then

(u − Pu, v) :=
( ∞∑
n=N+1

(u,ϕn)ϕn, v

)
=

∞∑
n=N+1

(u,ϕn)(ϕn, v)

and the right hand side tends to zero as N → ∞, due to the convergent Fourier series.
Thus u − Pu ⊥ HN for all v ∈ HN .

Finally, we use the above result to estimate the approximation error ‖u − v‖HN ,
where v ∈ HN is an arbitrary element. We have:

‖u − v‖2HN
:= (u − v, u − v) = (u − Pu + Pu − v, u − Pu + Pu − v)

= ‖u − Pu‖2HN
+ ‖v − Pu‖2HN

,

by (2.1.8). The right hand side has minimum value when v = Pu, i.e. v ∈ HN is a
projection of u ∈ H . In this case we obtain:
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inf
v∈HN

‖u − v‖HN = ‖u − Pu‖HN ,

which is the best approximation problem. �

2.2 Range and Null-Space of Adjoint Operators

Relationships between the null-spaces and ranges of a linear operator and its adjoint
play an important role in inverse problems. The results given below show that the
range of a linear bounded operator can be derived via the null-space of its adjoint.
Note that for the linear bounded operator A : H �→ H̃ , defined between Hilbert
spaces H and H̃ , the adjoint operator A∗ : H̃ �→ H is defined as follows:

(Au, v)H̃ = (u, A∗v)H , ∀u ∈ H, v ∈ H̃ .

Theorem 2.2.1 Let A : H �→ H̃ be a linear bounded operator, defined between
Hilbert spaces H and H̃ , and A∗ : H̃ �→ H be its adjoint. Then
(p1) R(A)⊥ = N (A∗);
(p2) R(A) = N (A∗)⊥,
where R(A) and N (A∗) are the range and null-space of the operators A and A∗,
correspondingly.

Proof Let v ∈ N (A∗). Then A∗v = 0, and for all u ∈ H we have:

0 = (u, A∗v)H = (Au, v)H̃ .

This implies that v ∈ R(A)⊥, i.e.N (A∗) ⊂ R(A)⊥. Now suppose v ∈ R(A)⊥. Then
(Au, v)H̃ = 0, for all u ∈ H . Hence 0 = (Au, v)H̃ = (u, A∗v)H , for all u ∈ H ,
which means v ∈ N (A∗). This implies R(A)⊥ ⊂ N (A∗).

To prove (p2) let us assume first that v ∈ R(A) is an arbitrary element. Then there
exists such a sequence {vn} ∈ R(A) that

vn = Aun and lim
n→∞ vn = v.

Assuming w ∈ N (A∗) we conclude that A∗w = 0, so

(vn, w)H̃ = (Aun, w)H̃ = (un, A
∗w)H = 0.

Hence

|(v,w)| ≤ |(v − vn, w)| + |(vn, w)| ≤ ‖(v − vn, w)‖ ‖w‖.
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The right hand side tends to zero as n → ∞, which implies (v,w) = 0, for all w ∈
N (A∗), i.e. v ∈ N (A∗)⊥. ThereforeR(A) ⊂ N (A∗)⊥. To proveN (A∗)⊥ ⊂ R(A),
we need to prove that if v /∈ R(A), then v /∈ N (A∗)⊥. Since R(A) is a closed sub-
space of the Hilbert space H , by Corollary 2.1.1 there exists a unique decomposition
of the above defined element v ∈ H :

v = v0 + w0, v0 ∈ R(A), w0 ∈ R(A)⊥,

with v0 := Pv. Then (v,w0) := (v0 + w0, w0) = ‖w0‖2 �= 0. But by (p1), w0 ∈
N (A∗), so (v,w0) �= 0, which means that v /∈ N (A∗)⊥. This completes the
proof. �

Lemma 2.2.1 Let A : H �→ H̃ be a bounded linear operator. Then (A∗)∗ = A and
‖A‖2 = ‖A∗‖2 = ‖AA∗‖ = ‖A∗A‖.
Proof We can easily show that (A∗)∗ = A. Indeed, for all u ∈ H , v ∈ H̃ ,

(v,
(
A∗)∗

u)H̃ = (A∗v, u)H = (u, A∗v)H = (Au, v)H̃ = (v, Au)H̃ .

Further, it follows from the definition ‖A∗v‖2 := (A∗v, A∗v)H , v ∈ H̃ , that
‖A∗v‖2 = (AA∗v, v)H̃ ≤ ‖A‖‖A∗v‖‖v‖, and hence ‖A∗v‖ ≤ ‖A‖‖v‖, which
implies boundedness of the adjoint operator: ‖A∗‖ ≤ ‖A‖. In the same way we can
deduce ‖A‖ ≤ ‖A∗‖, interchanging the roles of the operators A and A∗. Therefore,
‖A∗‖ = ‖A‖.

To prove the second part of the lemma, we again use the definition ‖Au‖2 :=
(Au, Au)H̃ , u ∈ H . Then, ‖Au‖2 = (A∗Au, u)H ≤ ‖A∗Au‖ ‖u‖, and we get
‖A‖2 ≤ ‖A∗A‖. On the other hand, ‖A∗A‖ ≤ ‖A∗‖‖A‖ = ‖A‖2, since ‖A∗‖ =
‖A‖. Thus ‖A‖2 = ‖A∗A‖. �

Corollary 2.2.1 Let conditions of Theorem 2.2.1 hold. Then
(c1) N (A∗) = N (AA∗);
(c2) R(A) = R(AA∗).

Proof Let v ∈ N (A∗). Then A∗v = 0 and hence AA∗v = 0, which implies v ∈
N (AA∗), i.e. N (A∗) ⊂ N (AA∗). Suppose now v ∈ N (AA∗). Then AA∗v = 0
and ‖A∗v‖2H := (A∗v, A∗v)H = (AA∗v, v)H̃ = 0. This implies A∗v = 0, i.e. v ∈
N (A∗), which completes the proof of (c1). To prove (c2) we use the formula
(AA∗)∗ := A∗∗A∗ = AA∗ and the second relationship (p2) in Theorem2.2.1, replac-
ing here A by AA∗. We have R(AA∗) = N (AA∗)⊥. Taking into account here (c1)
we concludeR(AA∗) = N (A∗)⊥. With the relationship (p1) in Theorem 2.2.1, this
completes the proof. �

Remark that if A is a bounded linear operator defined on a Hilbert space H , then
AA∗ and A∗A are positive.

Now we briefly show a crucial role of adjoint operators in studying the solvability
of linear equations. Let A : H �→ H̃ be a bounded linear operator. Consider the linear
operator equation
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Au = f, u ∈ H, f ∈ H̃ . (2.2.1)

Denote by v ∈ H̃ a solution of the homogeneous adjoint equation A∗v = 0. Then
we have:

( f, v)H̃ := (Au, v)H̃ = (u, A∗v)H = 0.

Hence ( f, v) = 0 for all v ∈ N (A∗), and by H̃ = N (A∗)⊥ ⊕ N (A∗), this implies:
f ∈ N (A∗)⊥. On the other hand, Fredholm alternative asserts that Eq. (2.2.1) has a
(non-unique) solution if and only if f ⊥ v for each solution v ∈ H̃ of the homoge-
neous adjoint equation A∗v = 0. This leads to the following result.

Proposition 2.2.1 Let A : H �→ H̃ be a bounded linear operator on aHilbert space
H. Then a necessary condition for existence of a solution u ∈ H of Eq. (2.2.1) is the
condition

f ∈ N (A∗)⊥. (2.2.2)

Using Theorem 2.2.1 we can write H as the orthogonal (direct) sum

H = R(A) ⊕ N (A∗). (2.2.3)

If the range R(A) of A is closed in H , that is, if R(A) = R(A), then using (2.2.3)
and Proposition 2.2.1, we obtain the following necessary and sufficient condition for
the solvability of Eq. (2.2.1).

Theorem 2.2.2 Let A : H �→ H̃ be a bounded linear operator with closed range.
Then Eq. (2.2.1) has a solution u ∈ H if and only if condition (2.2.2) holds.

This theorem provides a useful tool for proving existence of a solution of the
closed range operator Eq. (2.2.1) via the null-space of the adjoint operator.

2.3 Moore-Penrose Generalized Inverse

Let A : H �→ H̃ be a bounded linear operator between the real Hilbert spaces H
and H̃ . Consider the operator Eq. (2.2.1). Evidently, a solution of (2.2.1) exists if
and only if f ∈ R(A) ⊂ H̃ . This means that the first condition (i1) of Hadamard’s
Definition 1.1.1 holds. Assume now that f ∈ H̃ does not belong to the rangeR(A)
of the operator A which usually appears in applications. It is natural to extend the
notion of solution for this case, looking for an approximate (or generalized) solution
of (2.2.1) which satisfies this equation as well as possible. For this aim we introduce
the residual ‖ f − Au‖H̃ and then look for an element u ∈ H , as in Definition 2.1.1,
which minimizes this norm:

http://dx.doi.org/10.1007/978-3-319-62797-7_1
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‖ f − Au‖H̃ = inf
v∈H ‖ f − Av‖H̃ . (2.3.1)

The minimum problem (2.3.1) is called a least squares problem and accordingly, the
best approximation u ∈ H is called a least squares solution to (2.2.1).

Let us consider first theminimum problem (2.3.1) from differential calculus view-
point. Introduce the functional

J (u) = 1

2
‖Au − f ‖2

H̃
, u ∈ H.

Using the identity

J (u + h) − J (u) = 2
(
A∗(Au − f ), h

) + ‖Au‖2H , ∀h ∈ H,

we obtain the Fréchet differential

(J ′(u), h
) = 2

(
A∗(Au − f ), h

)
, h ∈ H

of this functional. Hence the least squares solution u ∈ H of the operator
Eq. (2.2.1) is defined from the condition

(J ′(v), h
) = 0, for all h ∈ H , as follows:

(A∗(Au − f ), h) = 0, i.e. as a solution of the equation

A∗Au = A∗ f. (2.3.2)

This shows that least squares problem (2.3.1) is equivalent to Eq. (2.3.2) with the
formal solution

u = (
A∗A

)−1
A∗ f, f ∈ H̃ . (2.3.3)

Equation (2.3.2) is called the normal equation.
The normal equation plays an important role in studying ill-posed problems as we

will see in next sessions. First of all, remark that the operator A in (2.2.1) may not be
injective, which means non-uniqueness in view of Hadamard’s definition. The first
important property of the normal Eq. (2.3.2) is that the operator A∗A is injective on
the range R(A∗) of the adjoint operator A∗, even if the bounded linear operator A
is not injective. For this reason, the normal equation is the most appropriate one to
obtain a least squares solution of an inverse problem.

Lemma 2.3.1 Let A : H �→ H̃ be a bounded linear operator and H, H̃ Hilbert
spaces. Then the operator A∗A : R(A∗) ⊂ H �→ H is injective.

Proof Note, first of all, that R(A∗) = R(A∗A), as it follows from Corollary 2.2.1
(replacing A by A∗). Let u ∈ R(A∗) be such an element that A∗Au = 0. Then Au ∈
N (A∗), by definition of the null-space. ButN (A∗) = R(A)⊥, due to Theorem 2.2.1.
On the other hand, Au ∈ R(A), since Au is the image of the element u ∈ H under
the transformation A. Thus, Au ∈ R(A) ∩ R(A)⊥ which implies Au = 0. This in
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turn means that u ∈ N (A) = R(A∗)⊥. With the above assumption u ∈ R(A∗), we
conclude that u ∈ R(A∗) ∩ R(A∗)⊥, i.e. u = 0. Therefore A∗Au = 0 implies u = 0,
which proves the injectivity of the operator A∗A. �

Let us explain now an interpretation of the “inverse operator” (A∗A)−1 A∗ in
(2.3.3), in view of the orthogonal projection.

As noted above, f ∈ H̃ may not belong to the range R(A) of the operator A.
So, we assume that f ∈ H̃ \ R(A) is an arbitrary element and try to construct a
unique linear extension of an “inverse operator” fromR(A) to the subspaceR(A) ⊕
R(A)⊥. Since the closure R(A) of the range R(A) is a closed subspace of H̃ ,

by Corollary 2.1.2, H̃ = R(A) ⊕ R(A)⊥ (note that R(A)
⊥ = R(A)⊥ = R(A)⊥).

Hence R(A) ⊕ R(A)⊥ is dense in H̃ . By the same corollary, the projection P f of
the arbitrary element f ∈ R(A) ⊕ R(A)⊥ is in R(A). This means that there exists
such an element u ∈ H that

Au = P f, f ∈ R(A) ⊕ R(A)⊥. (2.3.4)

By the Orthogonal Decomposition, the element Au being the projection of f onto
R(A), is an element of R(A). Furthermore, the element u ∈ H is a least squares
solution to (2.2.1), i.e. is a solution of the minimum problem (2.3.1). This implies
that a least squares solution u ∈ H of (2.2.1) exists if and only if f is an element of
the dense in H̃ subspace R(A) ⊕ R(A)⊥.

On the other hand, for each element f ∈ R(A) ⊕ R(A)⊥ the following (unique)
decomposition holds:

f = P f + h, P f ∈ R(A), h ∈ R(A)⊥. (2.3.5)

Hence for each projection P f ∈ R(A) we have f − P f ∈ R(A)⊥. Taking into
account (2.3.4), we conclude from (2.3.5) that

f − Au ∈ R(A)⊥. (2.3.6)

But R(A)⊥ = N (A∗), by Theorem 2.2.1. Hence

f − Au ∈ N (A∗). (2.3.7)

By definition of the null-space, (2.3.7) implies that A∗( f − Au) = 0. Thus, again
we arrive at the same result: u ∈ H satisfies the normal Eq. (2.3.2).

Therefore we have constructed amapping A† fromR(A) ⊕ R(A)⊥ into H ,which
associates each element f ∈ R(A) ⊕ R(A)⊥ to the least squares solution u ∈ H of
the operator equation (2.2.1). Furthermore, the domain D(A)† := R(A) ⊕ R(A)⊥
of this mapping is obtained in a natural way.

This mapping is called the Moore-Penrose (generalized) inverse of the bounded
linear operator A and is denoted by A†:
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A† : R(A) ⊕ R(A)⊥ �→ H. (2.3.8)

Evidently, the generalized inverse is a densely defined linear operator, that is,
D(A†) = H̃ , since a least squares solution exists only if f is an element of the
dense in H̃ subspace R(A) ⊕ R(A)⊥.

To complete this definition, let us answer the question: the operator A† is an
inverse of which operator? First of all, the normal Eq. (2.3.2) shows that a least
squares solution exists if and only if N (A∗A) = {0}, or equivalently, N (A) = 0,
due toN (A∗A) = N (A), by Corollary 2.2.1. Since A∗A : H �→ H is a self-adjoint
operator, it follows from Theorem 2.2.1 and Corollary 2.2.1 that

H := R(A∗A) ⊕ R(A∗A)⊥

= R(A∗) ⊕ N (A∗A)⊥

= N (A)⊥ ⊕ N (A) (2.3.9)

The last line of decompositions (2.3.9) shows that to ensure the existence, we need
to restrict the domain of the linear operator A : H �→ H̃ from D(A) to N (A)⊥. By
this way, we define this operator as follows:

Å := A|N (A)⊥ , Å : N (A)⊥ ⊂ H �→ R(A) ⊂ H̃ .

It follows from this construction that N ( Å) = {0} and R( Å) = R(A). Therefore,
the inverse operator

Å−1 : R(A) ⊂ H̃ �→ N (A)⊥ ⊂ H (2.3.10)

exists. However, the range R( Å−1) of this inverse operator is in H̃ and does not
contain the elements f ∈ H̃ \ R(A). For this reason, at the second stage of the
above construction, we extended this range fromR(A) toR(A) ⊕ R(A)⊥, in order
include those elements which may not belong toR(A).

Thus, following to [23], we can define theMoore-Penrose inverse A† as follows.

Definition 2.3.1 TheMoore-Penrose (generalized) inverse of a bounded linear oper-
ator A is the unique linear extension of the inverse operator (2.3.10) from R(A) to
R(A) ⊕ R(A)⊥:

A† : R(A) ⊕ R(A)⊥ �→ N (A)⊥ ⊂ H, (2.3.11)

with

N (A†) = R(A)⊥. (2.3.12)

The requirement (2.3.12) in this definition is due to (2.3.6) and (2.3.7). This require-
ment implies, in particular, that the Moore-Penrose inverse A† is a linear operator.
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Corollary 2.3.1 Let f ∈ D(A†). Then u ∈ H is a least squares solution of the oper-
ator equation Au = f if and only if it is a solution of the normal Eq. (2.3.2).

Proof It follows from (2.3.1) that u ∈ H is a least squares solution of Au = f if
and only if Au is the closest element to f in R(A). The last assertion is equivalent
to (2.3.6), i.e. f − Au ∈ R(A)⊥. By Theorem 2.2.1,R(A)⊥ = N (A∗). Hence f −
Au ∈ N (A∗), which means A∗( f − Au) = 0 or A∗Au = A∗ f . �

The following theorem shows that the Moore-Penrose inverse of a bounded linear
operator is a closed operator. Remark that a linear operator L : H1 �→ H2 is closed
if and only if for any sequence {un} ⊂ D(L), satisfying

lim
n→∞ un = u, and lim

n→∞ Lun = v,

the conditions hold:

u ∈ D(L), and v = Lu. (2.3.13)

Theorem 2.3.1 Let A : H �→ H̃ be a linear bounded operator from the Hilbert
spaces H into H̃ . Then the Moore-Penrose inverse A†, defined by (2.3.11) and
(2.3.12), is a closed operator.

Proof Let { fn} ⊂ D(A†), n = 1, 2, 3, . . ., fn → f , and A† fn → u, as n → ∞.
Denote by un := A† fn the unique solution of the normal Eq. (2.3.2) for each n,
that is, A∗Aun = A∗ fn , un ∈ N (A)⊥. Since N (A)⊥ is closed, {un} ⊂ N (A)⊥ and
un → u, as n → ∞, which implies u ∈ N (A⊥), i.e. u ∈ R(A†), by (2.3.11). Hence,
the first condition of (2.3.13) holds. Now we prove that u = A† f . Due to the conti-
nuity of the operators A∗A and A∗ we have:

A∗Aun → A∗Au, and A∗Aun = A∗ fn → A∗ f, as n → ∞.

The left hand sides are equal, so A∗Au = A∗ f , i.e. u ∈ N (A)⊥ is the solution of the
normal Eq. (2.3.3). By Corollary 2.3.1, u = A† f . This completes the proof. �

Corollary 2.3.2 Let conditions of Theorem 2.3.1 hold. Then the Moore-Penrose
inverse A† is continuous if and only ifR(A) is closed.

Proof Let A†, defined by (2.3.11) and (2.3.12), be a continuous operator. Assume
that { fn} ⊂ R(A) be a convergent sequence: fn → f , as n → ∞. We need to prove
that f ∈ R(A). Denote by un := A† fn . Then un ∈ N (A)⊥, for all n = 1, 2, 3, . . ..
Since A† is continuous and N (A)⊥ is closed we conclude:

u := lim
n→∞ un = lim

n→∞ A† fn = A† f, and u ∈ N (A)⊥.

On the other hand, Aun = fn and A : H �→ H̃ is a continuous operator, so Au = f ,
where f is the above defined limit of the sequence { fn} ⊂ R(A). But the element
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Au, being the projection of f ontoR(A), is an element ofR(A), by (2.3.4). Hence,
f ∈ R(A), which implies that R(A) is closed.
To prove the second part of the corollary, we assume now R(A) is closed. By

definition (2.3.11),D(A†) := R(A) ⊕ R(A)⊥, which impliesD(A†) is closed, since
the orthogonal complementR(A)⊥ is a closed subspace. As a consequence, the graph
GA† := {( f, A† f : f ∈ D(A†)} of the operator A† is closed. Then, as a closed graph
linear operator, A† is continuous. �

Remember that in the case when A is a linear compact operator, the rangeR(A)
is closed if and only if it is finite-dimensional.

Remark, finally, that the notion of generalized inverse has been introduced by
E. H. Moore and R. Penrose [69, 80, 81]. For ill-posed problems this very useful
concept has been developed in [23, 31].

2.4 Singular Value Decomposition

Aswehave seen already in the introduction, inverse problemswith compact operators
are an challenging case. Most inverse problems related to differential equations are
represented by these operators. Indeed, all input-output operators corresponding to
these inverse problems, are compact operators. Hence, compactness of the operator A
is a main source of ill-posedness of the operator equation (2.2.1) and our interest will
be directed towards the case A : H �→ H̃ in (2.2.1) is a linear compact operator.When
A is a self-adjoint compact operator, i.e. for all u ∈ H and v ∈ H̃ , (Au, v) = (u, Av),
we may use the spectral representation

Au =
∞∑
n=1

λn(u, un)un, ∀u ∈ H, (2.4.1)

where λn , n = 1, 2, 3, . . . are nonzero real eigenvalues (repeated according to its
multiplicity) and {un} ⊂ H is the complete set of corresponding orthonormal eigen-
vectors un . The set {〈λn, un〉}, consisting of all pairs of nonzero eigenvalues and cor-
responding eigenvectors, is defined an eigensystem of the self-adjoint operator A. It
is also known from the spectral theory of self-adjoint compact operators thatλn → 0,
as n → ∞. If dimR(A) = ∞ then for any ε > 0 the index set {n ∈ N : |λn| ≥ ε}
is finite. Here and below N is the set of natural numbers. If the range R(A) of a
compact operator is finite, λn = 0, for all n > dimR(A).

However, if A is not-self-adjoint, there are no eigenvalues, hence no eigensystem.
In this case, the notion singular system replaces the eigensystem. To describe this
systemwe use the operators A∗A and AA∗. Both A∗A : H �→ H and AA∗ : H̃ �→ H̃
are compact self-adjoint nonnegative operators. We denote the eigensystem of the
self-adjoint operator A∗A by {〈μn, un〉}. Then A∗Aun = μnun , for all un ∈ H , which
implies (A∗Aun, un) = μn(un, un). Hence ‖Aun‖2H̃ = μn‖un‖2H ≥ 0, which means
all nonzero eigenvalues are positive: μn > 0, n ∈ N, where N := {n ∈ N : μn �= 0}
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(at most countable) index set of positive eigenvalues. We denote the square roots
of the positive eigenvalues μn of the self-adjoint operator A∗A : H �→ H by σn :=√

μn , n ∈ N. Below we will assume that these eigenvalues are ordered as follows:
μ1 ≥ μ2 ≥ . . . ≥ μn ≥ . . . > 0.

Definition 2.4.1 Let A : H �→ H̃ be a linear compact operator with adjoint A∗ :
H̃ �→ H , H and H̃ be Hilbert spaces. The square root σn := √

μn of the eigenvalue
μn > 0 of the self-adjoint operator A∗A : H �→ H is called the singular value of the
operator A.

Using the spectral representation (2.4.1) for the self-adjoint compact operator
A∗A we have:

A∗Au =
∞∑
n=1

σ2
n(u, un)un, ∀u ∈ H. (2.4.2)

Let us introduce now the orthonormal system {vn} in H̃ , via the orthonormal
system {un} ⊂ H as follows: vn := Aun/‖Aun‖. Applying A∗ to both sides we have:
A∗vn = A∗Aun/‖Aun‖. By the above definition A∗Aun = σ2

nun and ‖Aun‖ = σn .
This implies:

A∗vn = σnun.

Act by the adjoint operator A∗ now on both sides of the Fourier representation v =∑∞
n=1(v, vn)vn , v ∈ H̃ , where vn = Aun/‖Aun‖. Taking into account the definition

A∗vn = σnun , we have:

A∗v =
∞∑
n=1

σn(v, vn)un, v ∈ H̃ . (2.4.3)

Applying A to both sides of (2.4.3) and using ‖Aun‖ = σn we obtain the spectral
representation for the self-adjoint operator AA∗:

AA∗v =
∞∑
n=1

σ2
n(v, vn)vn, v ∈ H̃ . (2.4.4)

It is seen from (2.4.2) and (2.4.4) that the eigenvalues σ2
n > 0, n ∈ N, of the self-

adjoint operators AA∗ and A∗A are the same, as expected.
The representation (2.4.3) is called singular value expansion of the adjoint oper-

ator A∗ : H̃ �→ H . For the operator A : H �→ H̃ this expansion can be derived in a
similar way:

Au =
∞∑
n=1

σn(u, un)vn, u ∈ H. (2.4.5)
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Substituting v = vn in (2.4.3) and u = un in (2.4.5), we obtain the following formu-
lae:

Aun = σnvn, A∗vn = σnun. (2.4.6)

The triple {σn, un, vn} is called the singular system for the non-self-adjoint oper-
ator A : H �→ H̃ .

As we will see in the next chapter, some input-output operators related to inverse
source problems are self-adjoint. If A : H �→ H̃ is a self-adjoint operator with eigen-
system {〈λn, un〉}, then ‖Aun‖ = |λn| and

vn := Aun/‖Aun‖ = λun/|λn|,

by the above construction. Therefore, the singular system for the self-adjoint operator
A : H �→ H̃ is defined as the triple {σn, un, vn}, with σ = |λn| and vn = λun/|λn|.
Example 2.4.1 Singular values of a self-adjoint integral operator

Assuming H = L2(0,π), we define the non-self-adjoint integral operator A : H �→
H as follows:

(Au)(x) :=
∫ π

x
u(ξ)dξ, x ∈ (0,π), u ∈ H. (2.4.7)

By using the integration by parts formula and the definition (Au, v)L2(0,π) =
(u, A∗v)L2(0,π), ∀u, v ∈ H , we can easily construct the adjoint operator A∗ : H �→
H :

(A∗v)(x) =
∫ x

0
v(ξ)dξ, x ∈ (0,π), v ∈ H. (2.4.8)

Evidently, both integral operators (2.4.7) and (2.4.8) are compact. Indeed, let {un}∞n=1
be a bounded sequence in L2(0,π) with ‖un‖L2(0,π) ≤ M , M > 0. Then for any
x1, x2 ∈ [0,π], (2.4.7) implies:

|(Aun)(x1) − (Aun)(x2)| ≤
∣∣∣∣
∫ x2

x1

un(ξ)dξ

∣∣∣∣ ≤ M |x1 − x2|1/2.

This shows that {(Au)n} is an equicontinuous family of functions in C[0,π]. Hence,
there exists a subsequence {(Au)m} ⊂ {(Au)n} that converges uniformly inC[0,π] to
a continuous function v. Since uniform convergence implies convergence in L2[0,π],
we conclude that the subsequence {(Tu)m} converges in L2[0,π]. Therefore the
integral operator defined by (2.4.7) is compact because the image of a bounded
sequence always contains a convergent subsequence.

Now we define the self-adjoint integral operator A∗A:
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(A∗Au)(x) =
∫ x

0

∫ π

ξ

u(η)dηdξ, u ∈ H. (2.4.9)

To find the nonzero positive eigenvalues μn > 0, n ∈ N, of the self-adjoint integral
operator A∗A, defined by (2.4.9), the eigenvalue problem should be solved for the
integral equation

(A∗Au)(x) = σ2u(x), x ∈ (0,π). (2.4.10)

Differentiating both sides of (2.4.10) twice with respect to x ∈ [0,π] we arrive at
the Sturm-Liouville equation: −u′′(x) = λu(x), λ = 1/σ2. To derive the boundary
conditions, we first substitute x = 0 in (2.4.10). Then we get u(0) = 0, by (2.4.9).
Differentiating both sides of (2.4.10) and substituting x = π we conclude u′(π) =
0. Hence, problem (2.4.10) is equivalent (in well-known sense) to the eigenvalue
problem

{−u′′(x) = λu(x), a.e. x ∈ (0,π), λ = 1/σ2,

u(0) = u′(π) = 0,
(2.4.11)

for the self-adjoint positive-defined differential operator Au := −u′′. The solution
of this problem is in H̊ 2[0,π] := {u ∈ H 2(0,π) : u(0) = 0}, where H 2(0,π) is the
Sobolev space.

Solving the eigenvalue problem (2.4.11)wefind the eigenvaluesλn = (n − 1/2)2,
n ∈ N, and the corresponding normalized eigenvectors un(x) = √

2/π sin(
√

λnx).
Hence, the eigenvalues σ2

n = 1/λn and the corresponding eigenvectors un(x) of the
self-adjoint integral operator A∗A are

σ2
n = (n − 1/2)−2, un(x) = √

2/π sin((n − 1/2)x).

By Definition 2.4.1, σn = (n − 1/2)−1, n ∈ N, are the eigenvalues of the non-self-
adjoint integral operator A. The corresponding eigenvectors, given in equations
(2.4.6) are

un(x) = √
2/π sin((n − 1/2)x), vn(x) = √

2/π cos((n − 1/2)x).

Thus, the singular system {σn, un, vn} for the non-self-adjoint integral operator
(2.4.7) is defined as follows:

{(n − 1/2)−1,
√
2/π sin((n − 1/2)x),

√
2/π cos((n − 1/2)x)}. �

Remark 2.4.1 The above example insights into the degree of ill-posedness of sim-
plest integral equations Au = f and A∗Au = A∗ f , with the operators A and A∗A,
defined by (2.4.7) and (2.4.9). In the first case one needs an operation differentiation
(which is an ill-posed procedure) to find u = A−1 f . As a result, σn = O(n−1). In
the second case the operator A∗A, defined by (2.4.8), contains two integration and
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hence one needs to differentiate twice to find u = (A∗A)−1A∗ f , which results in the
singular values as O(n−2). We come back to this issue in the next chapter.

The above considerations lead to so-called Singular Value Decomposition (or
normal form) of compact operators.

Theorem 2.4.1 (Picard) Let H and H̃ be Hilbert spaces and A : H �→ H̃ be a linear
compact operator with the singular system {σ, un, vn}. Then the equation Au = f
has a solution if and only if

f ∈ N (A∗)⊥ and
∞∑
n=1

1

σ2
n

|( f, vn)|2 < +∞. (2.4.12)

In this case

u := A† f =
∞∑
n=1

1

σn
( f, vn)un (2.4.13)

is the solution of the equation Au = f .

Proof Let the equation Au = f has a solution. Then f must be in R(A). But by
Theorem 2.2.1,R(A) = N (A∗)⊥. Hence f ∈ N (A∗)⊥ and the first part of (2.4.12)
holds. To prove the second part of (2.4.12) we use the relation A∗vn = σnun in (2.4.6)
to get

σn(u, un) = (u, A∗vn) = (Au, vn) = ( f, vn).

Hence, (u, un) = ( f, vn)/σn . Using this in

u =
∞∑
n=1

(u, un)un, u ∈ H (2.4.14)

we obtain:

u =
∞∑
n=1

1

σn
( f, vn)un.

But the orthonormal system {un} is complete, so the Fourier series (2.4.14) is con-
vergent. By the convergence criterion this implies the second condition of (2.4.12):

∞∑
n=1

1

σ2
n

|( f, vn)|2 =
∞∑
n=1

|(u, un)|2 < +∞.

To prove the second part of the theorem, we assume now that conditions (2.4.12)
hold. Then series (2.4.13) converges. Acting on both sides of this series by the
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operator A, using f ∈ N (A∗)⊥ = R(A) and Aun = σnvn we get:

Au =
∞∑
n=1

1

σn
( f, vn)Aun

∞∑
n=1

( f, vn)vn = f.

This completes the proof. �

Since μn > 0, n ∈ N are eigenvalues of the self-adjoint operator A∗A (as well
as AA∗) and σn := √

μn , we have: σn → 0, as n → ∞, if dimR(A) = ∞. Then it
follows from formulae (2.4.12)-(2.4.13) that A† is an unbounded operator. Indeed,
for any fixed eigenvector vk , with ‖vk‖ = 1, we have:

‖A†vk‖ = 1

σk
→ ∞, as n → ∞.

The second condition (2.4.12), calledPicard criterion, shows that the best approx-
imate solution of the equation Au = f exists if only the Fourier coefficients ( f, vn)
of f decay faster than the singular values σn . Concrete examples related to this issue
will be given in the next chapter.

As noted in Remark 2.4.1, singular value decomposition reflects the ill-posedness
of the equation Au = f with a compact operator A between the infinite dimensional
Hilbert spaces H and H̃ . Indeed, the decay rate of the non-increasing sequence
{σn}∞n=1 characterizes the degree of ill-posedness of an ill-posed problem. In partic-
ular, the amplification factors of a measured data errors in nth Fourier component
of the series (2.4.13), corresponding to the integral operators (2.4.7) and (2.4.9),
increase as n and n2, respectively, due to the factor 1/σn . In terms of corresponding
problems Au = f and A∗Au = A∗ f this means that the second problem is more
ill-posed than the first one. Hence, solving numerically the second ill-posed problem
is more difficult than the first one.

These considerations motivate the following definition of ill-posedness of prob-
lems governed by compact operators, proposed in [43].

Definition 2.4.2 Let A : H �→ H̃ be a linear compact operator between the infinite
dimensional Hilbert spaces H and H̃ . If there exists a constant C > 0 and a real
number s ∈ (0,∞) such that

σn ≥ C

ns
, for all n ∈ N, (2.4.15)

then the equation Au = f is called moderately ill-posed of degree at most s. If
for any ε > 0, condition (2.4.15) does not hold with s replaced by s − ε > 0, then
the equation Au = f is called moderately ill-posed of degree s. If no such number
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s ∈ (0,∞) exists such that condition (2.4.15) holds, then the equation Au = f is
called severely ill-posed.

Typical behavior of severe ill-posedness is exponential decay of the singular values
of the compact operator A. As we will show in the next chapter, classical backward
parabolic problem is severely ill-posed, whereas the final data inverse source prob-
lems related to parabolic and hyperbolic equations are only moderately ill-posed.
Remark that some authors use more detailed classification, distinguishing between
mildly ill-posedness (s ∈ (0, 1)) and moderately ill-posedness (s ∈ (1,∞)).

In applications, to obtain an approximation of A† f one can truncate the series
(2.4.13):

uN :=
N∑

n=1

1

σn
( f, vn)un. (2.4.16)

This method of obtaining the approximate solution uN is called the truncated
singular value decomposition (TSVD).

To understand the role of the cutoff parameter N , we assume that the right hand
side f ∈ H of the equation Au = f is given with some measurement error δ > 0,
i.e. ‖ f − f δ‖ ≤ δ, where f δ is a noisy data. Then

uN ,δ :=
N∑

n=1

1

σn
( f δ, vn)un (2.4.17)

is an approximate solution of the equation Au = f δ corresponding to the noisy data
f δ . Let us estimate the norm ‖uN − uN ,δ‖, i.e. the difference between the approxi-
mate solutions corresponding to the noise free ( f ) and noisy ( f δ) data. From (2.4.16)-
(2.4.17) we deduce the estimate:

‖uN − uN ,δ‖2 =
N∑

n=1

1

σ2
n

∣∣( f − f δ, vn)
∣∣2

≤ 1

σ2
N

N∑
n=1

∣∣( f − f δ, vn)
∣∣2 ≤ δ2

σ2
N

.

Using this estimate we can find the accuracy error ‖uN ,δ − A† f ‖, i.e. the difference
between the best approximate solution A† f , corresponding to the noise free data
f , and the approximate solution uN ,δ , obtained by TSVD and corresponding to the
noisy data f δ:

‖uN ,δ − A† f ‖ ≤ ‖uN − A† f ‖ + ‖uN − uN ,δ‖
≤ ‖uN − A† f ‖ + δ

σN
. (2.4.18)
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The first term ‖uN − A† f ‖ on the right hand side of estimate (2.4.18) depends
only on the cutoff parameter N and does not depend on the measurement error
δ > 0. This term is called the regularization error. The second term ‖uN − uN ,δ‖
on the right hand side of (2.4.18) depends not only on the cutoff parameter N ,
but also on the measurement error δ > 0. This term is called the data error. This
term exhibits some very distinctive features of a solution of the ill-posed problems.
Namely, the approximation error ‖uN ,δ − A† f ‖ decreases with δ > 0, for a fixed
value of the cutoff parameter N , on one hand. On the other hand, for a given δ > 0
this error tends to infinity, as N → ∞, since σN := √

μN → 0. Hence, the parameter
N = N (δ) needs to be chosen depending on δ > 0 such that

δ

σN (δ)
→ 0, as δ → 0. (2.4.19)

We use the right hand side of (2.4.17) to introduce the operator RN (δ) : H̃ �→ H ,

RN (δ) f
δ :=

N (δ)∑
n=1

1

σn
( f δ, vn)un. (2.4.20)

It follows from estimate (2.4.18) that if condition (2.4.19) holds, then

‖RN (δ) f
δ − A† f ‖ → 0, δ → 0.

Hence, the basic idea of TSVD in solving ill-posed problems is finding a finite
dimensional approximation of the unbounded operator A†. A class of such finite
dimensional operators definedby (2.4.20) and approximating the unboundedoperator
A† can be defined as regularization methodor regularization strategy. The cutoff
parameter N (δ) plays role of the parameter of regularization [35].

2.5 Regularization Strategy. Tikhonov Regularization

Let A : H �→ H̃ be a linear injective bounded operator between infinite-dimensional
real Hilbert spaces H and H̃ . Consider the linear ill-posed operator equation

Au = f, u ∈ H, f ∈ R(A). (2.5.1)

By the condition f ∈ R(A), the operator Eq. (2.5.1) is ill-posed in the sense that a
solution u ∈ H exists, but doesn’t depend continuously on the data f ∈ R(A). In
practice this data always contains a random noise. We denote by f δ ∈ H̃ the noisy
data and assume that

‖ f δ − f ‖H̃ ≤ δ, f ∈ R(A), f δ ∈ H̃ , δ > 0. (2.5.2)



46 2 Functional Analysis Background of Ill-Posed Problems

Then the exact equality in the equation Au = f δ can not be satisfied due to the noisy
data f δ and we may only consider the minimization problem

J (u) = inf
v∈H J (v) (2.5.3)

for the Tikhonov functional

J (u) = 1

2
‖Au − f δ‖2

H̃
, u ∈ H, f δ ∈ H̃ , (2.5.4)

where ‖Au − f δ‖2
H̃

:= (Au − f δ, Au − f δ)H̃ .
A solution u ∈ H of the minimization problem (2.5.3)–(2.5.4) is called quasi-

solution or least squares solution of the ill-posed problem (2.5.1). If, in addition,
this solution is defined as the minimum-norm solution, i.e. if

‖u‖H = inf {‖w‖H : w ∈ H is a least squares solution of (1.5.1)},

then this solution is called best approximate solution of (2.5.1). Note that the concept
of quasi-solution has been introduced in [49].

Since H is infinite-dimensional and A is compact, the minimization problem for
the functional (2.5.4) is ill-posed, the functional J (u) doesn’t depend continuously
on the data f δ ∈ R(A). One of the possible ways of stabilizing the functional is to
add the penalty term α‖u − u0‖2H , as in Optimal Control Theory, and then consider
the minimization problem for the regularized Tikhonov functional

Jα(u) := 1

2
‖Au − f δ‖2

H̃
+ 1

2
α‖u − u0‖2H , u ∈ H, f δ ∈ H̃ . (2.5.5)

Here α > 0 is the parameter of regularization and u0 ∈ H is an initial guess. Usually
u0 ∈ H is one of the possible good approximations to the exact solution u ∈ H , but
if such an initial guess is not known, we may take u0 = 0. Below we assume that
u0 = 0.

This approach is defined as Tikhonov regularization [95, 96] or Tikhonov-Phillips
regularization [83].

Theorem 2.5.1 Let A : H �→ H̃ be a linear injective bounded operator between
real Hilbert spaces H and H̃ . Then the regularized Tikhonov functional (2.5.5) has
a unique minimum uδ

α ∈ H, for all α > 0. This minimum is the solution of the linear
equation

(
A∗A + αI

)
uδ

α = A∗ f δ, uδ
α ∈ H, f δ ∈ H̃ , α > 0 (2.5.6)

and has the form

uδ
α = (

A∗A + αI
)−1

A∗ f δ. (2.5.7)
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Moreover, the operator A∗A + αI is boundedly invertible, hence the solution uδ
α

continuously depends on f δ .

Proof First of all, note that the Fréchet differentiability of the functional (2.5.5)
follows from the identity:

Jα(u + v) − Jα(u) = (
A∗(Au − f δ) + αu, v

) + 1

2
‖Av‖2 + 1

2
α‖v‖2, ∀u, v ∈ H,

where A∗ : H̃ �→ H is the adjoint operator of A. This identity implies:

{
(J ′

α(u), v) = (Au − f δ, Av) + α(u, v), ∀v ∈ H ;
J ′′
α (u; v, v) = ‖Av‖2 + α‖v‖2, ∀v ∈ H.

(2.5.8)

Formula (2.5.8) for the second Fréchet derivative J ′′
α (u; v, v) shows that the reg-

ularized Tikhonov functional Jα(u) defined on a real Hilbert H space is strictly
convex, since α > 0, and lim‖u‖→+∞ Jα(u) = +∞. Then it has a unique minimizer
uδ

α ∈ H and this minimum is characterized by the following necessary and sufficient
condition

(J ′
α(u), v) = 0, ∀v ∈ H, (2.5.9)

where J ′
α(u) is the first Fréchet derivative of the regularized Tikhonov functional.

Thus, condition (2.5.9) with formula (2.5.8) implies that the minimum uδ
α ∈ H of the

regularized Tikhonov functional is the solution of the linear Eq. (2.5.6). This solution
is defined by (2.5.7), since the operator A∗A + αI is boundedly invertible. This
follows from the Lax-Milgram lemma and the positive definiteness of the operator
A∗A + αI :

(
(A∗A + αI )v, v

) = ‖Av‖2 + α‖v‖2 ≥ α‖v‖2, ∀v ∈ H, α > 0.

Evidently, the operator A∗A + αI is one-to-one for each positive α. Indeed, mul-
tiplication of the homogeneous equation (A∗A + αI )v = 0 by v ∈ H implies:
(A∗Av, v) + α(v, v) = (Av, Av) + α(v, v) = 0. This holds if and only if v = 0.
This completes the proof. �

From (2.5.8) we deduce the gradient formula for the regularized Tikhonov func-
tional.

Corollary 2.5.1 For the Fréchet gradient J ′
α(u) of the regularized Tikhonov func-

tional (2.5.4) the following formula holds:

J ′
α(u) = A∗ (

Au − f δ
) + αu, u ∈ H. (2.5.10)

Themain consequence of the Picard’s Theorems 2.4.1 and 2.5.1 is that the solution
uδ

α of the normal Eq. (2.5.6) corresponding to the noisy data f δ can be represented
by the following series:
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uδ
α =

∞∑
n=1

q(α;σn)

σn
( f δ, vn)un, α > 0, (2.5.11)

where

q(α;σ) = σ2

σ2 + α
(2.5.12)

is called the filter function.

Corollary 2.5.2 Let conditions of Theorem 2.4.1 hold and f δ ∈ N (A∗)⊥. Then the
unique regularized solution uδ

α ∈ H, given by (2.5.7), can be represented as the
convergent series (2.5.11).

Proof It follows from the normal Eq. (2.5.6) that αuδ
α = A∗ f δ − A∗Auδ

α. By Corol-
lary 2.2.1,R(A∗A) = R(A∗), so this implies that uδ

α ∈ R(A∗). But due to Theorem
2.2.1,R(A∗) = N (A)⊥ andwe conclude that uδ

α ∈ N (A)⊥. The orthonormal system
{um} spans N (A)⊥. Hence

uδ
α =

∞∑
m=1

cmum . (2.5.13)

To find the unknown parameters cm we substitute (2.5.13) into the normal Eq. (2.5.6):

∞∑
m=1

(σ2
m + α)cmum = A∗ f δ.

Multiplying both sides by un we get:

(σ2
n + α)cn = (A∗ f δ, un).

But (A∗ f δ, un) = (
f δ, Aun

) = σn( f δ, vn). Therefore

(σ2
n + α)cn = σn( f

δ, vn)

and the unknown parameters are defined as follows:

cm = σm

σ2
m + α

( f δ, vm)

Using this in (2.5.13) we obtain:

uδ
α =

∞∑
m=1

σm

σ2
m + α

(
f δ, vm

)
un.
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With formula (2.5.12), this implies (2.5.11). �

Remark that the filter function has the following properties:

q(α;σ) ≤ min

{
σ

2
√

α
; σ2

α

}
, ∀α > 0. (2.5.14)

These properties follow from the obvious inequalities:

σ2 + α ≡ (σ − √
α)2 + 2σ

√
α ≥ 2σ

√
α,

σ2

σ2 + α
≡ σ2/α

σ2/α + 1
≤ σ2

α
, ∀α > 0, σ > 0.

The linear Eq. (2.5.6) is defined as a regularized form of the normal equation
A∗Au = A∗ f δ [97].

If A∗A is invertible, then for α = 0 formula (2.5.7) implies that

uδ
0 = (A∗A)−1A∗ f δ =: A† f δ, α = 0 (2.5.15)

is the solution of the normal equation

A∗Auδ = A∗ f δ, uδ ∈ H, f δ ∈ H̃ . (2.5.16)

Evidently uδ
0 ∈ N (A)⊥, by Definition 2.3.1 of Moore-Penrose inverse A†.

It follows from (2.5.15) that Moore-Penrose inverse A† := (A∗A)−1A∗ arises
naturally as a result of minimization of Tikhonov functional. Remark that the pro-
visional replacement of the compact operators AA∗ or A∗A by the non-singular
operators AA∗ + αI or A∗A + αI , is the main idea of Tikhonov’s regularization
procedure. This procedure has originally been introduced by Tikhonov in [94] for
uniform approximations of solutions of Fredholm’s equation of the first kind. How-
ever, Tikhonov does not point to the relation of his ideas to Moore-Penrose inverse.

Let us assume now that α > 0. The right hand side of (2.5.7) defines family of
continuous operators

Rα := (
A∗A + αI

)−1
A∗ : H̃ �→ H, α > 0, (2.5.17)

depending on the parameter of regularization α > 0. Obviously, when data is noise
free, then the regularized solution Rα f should converge (in some sense) to A† f ,
as α → 0, that is, Rα f → A† f , for all f ∈ D(A†). In practice this data is always
noisy and we may only assume that it is known up to some error δ > 0, that is,
‖ f − f δ‖ ≤ δ. Hence the parameter of regularization α > 0 depends on the noise
level δ > 0 and the noise data f δ ∈ H̃ , and should be chosen appropriately, keeping
an error ‖uδ

α − u‖ as small as possible. A strategy of choosing the parameter of
regularization α = α(δ, f δ) is called a parameter choice rule. These considerations
lead to the following definition of regularization strategy.
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Definition 2.5.1 Let A : H �→ H̃ be an injective compact operator. Assume that
f, f δ ∈ H̃ be noise free and noisy data respectively, that is, ‖ f − f δ‖ ≤ δ < ‖ f δ‖,
δ > 0. A family {Rα(δ, f δ)}α of bounded linear operators is called a regularization
strategy or a convergent regularization method if for all f ∈ D(A†),

lim sup
δ→0+

{∥∥Rα(δ, f δ) f
δ − A† f

∥∥
H

: f δ ∈ H̃ ,
∥∥ f − f δ

∥∥ ≤ δ
}

= 0, (2.5.18)

with α : R+ × H̃ �→ R+, such that

lim sup
δ→0+

{
α(δ, f δ) : f δ ∈ H̃ , ‖ f − f δ‖ ≤ δ

}
= 0. (2.5.19)

If the parameter of regularization α = α(δ, f δ) depends only on the noise level
δ > 0, the rule α(δ, f δ) is called a-priori parameter choice rule. Otherwise, this
rule is called a-posteriori parameter choice rule. Tikhonov regularization is a typi-
cal example of a priori parameter choice rule, since the choice of the parameter of
regularizationα > 0 is made a priori, i.e. before computations, as we will see in The-
orem 2.5.2. The Morozov’s Discrepancy Principle is a regularization strategy with
a-posteriori parameter choice rule, since the choice of the parameter of regularization
α > 0 is made during the process of computing. Regarding the iterative methods,
the number of iterations plays here the role of the regularization parameter. As we
will show in the next chapter, Landweber’s Method and Conjugate Gradient Method
together with appropriate parameter choice rule are also a regularization strategy in
sense of Definition 2.5.1. We remark finally that, as in the case of Tikhonov regu-
larization, some widely used regularization operators Rα are linear. In particular,
the Morozov’s Discrepancy Principle and Landweber’s Method can be formulated
as linear regularization methods. However, the Conjugate Gradient Method is a non-
linear regularization method, since the right hand side of the equation Au = f does
not depend linearly on the parameter of regularization α.

Above definition, with Theorem 2.5.1, implies that the family of operators
{Rα}α>0, Rα : H̃ �→ H , defined as

Rα := (
A∗A + αI

)−1
A∗, α > 0, (2.5.20)

is the regularization strategy corresponding to Tikhonov regularization. That is, the
regularization operators Rα, α > 0, approximate the unbounded inverse A† of the
operator A on R(A). On the other hand, Corollary 2.5.1, implies that the singular
value expansion of this operator is

Rα f δ :=
∞∑
n=1

q(α;σn)

σn
( f δ, vn)un, α > 0. (2.5.21)
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It is easy to prove that the family of operators {Rα} are not uniformly bounded,
i.e. there exists a sequence {αm}∞m=1, αm > 0, such that ‖Rαm‖ → ∞, as αm → 0.
Indeed, taking f δ

α = vm in (2.5.21),wherevm is anyfixed eigenvector,with‖vm‖ = 1,
we have:

∥∥Rαmvm
∥∥ = σm

σ2
m + αm

.

For the sequence {αm} satisfying the conditions

αm → 0 and αm/σm → 1, as m → ∞,

we conclude:

‖Rαmvm‖ = 1

σm + αm/σm
→ ∞, as m → ∞.

The regularization strategy Rα possesses this property in general case as well.

Lemma 2.5.1 Let Rα be regularization strategy corresponding to the compact oper-
ator A : H �→ H̃ . Then the operators {Rα}α>0, Rα : H̃ �→ H, are not uniformly
bounded, i.e. there exists a sequence {αm}∞m=1, αm > 0, such that ‖Rαm‖ → ∞, as
αm → 0.

Proof Assume, in contrary, that there exists a constantM > 0, independent onα > 0,
such that ‖Rα‖ ≤ M , for all α > 0. Then for any f ∈ R(A) ⊂ H̃ we have:

‖A† f ‖ ≤ ‖A† f − Rα f ‖ + ‖Rα f ‖ ≤ ‖A† f − Rα f ‖ + ‖Rα‖‖ f ‖
≤ ‖A† f − Rα f ‖ + M‖ f ‖.

The first norm on the right-hand side tends to zero as α → 0, by definition (2.5.18).
Then passing to the limit we get: ‖A† f ‖ ≤ M‖ f ‖, for all f ∈ R(A), which implies
‖A†‖ ≤ M , i.e. boundedness of the generalized inverse A†. This contradiction com-
pletes the proof. �

Therefore, one needs to find a bounded approximation of the unbounded operator
A†. This approximation will evidently depends on both, the parameter of regulariza-
tion α > 0 and the noisy data f δ . So, the main problem of regularization strategy is
to find such a bounded approximation, which will be convergent to the best approx-
imate solution A† f corresponding to the exact data f ∈ N (A∗)⊥, as α → 0 and
δ → 0.

The following theorem gives an answer to this issue.

Theorem 2.5.2 Let A : H �→ H̃ be a linear injective bounded operator between
Hilbert spaces H and H̃ . Assume that conditions of Theorem 2.4.1 hold. Denote by
f δ ∈ N (A∗)⊥ the noisy data: ‖ f − f δ‖H̃ ≤ δ, δ > 0. Suppose that the conditions
hold:
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α(δ) → 0 and
δ2

α(δ)
→ 0, as δ → 0. (2.5.22)

Then the solution uδ
α := Rα(δ) f δ of the regularized form of the normal Eq. (2.5.6)

converges to the best approximate solution u := A† f of Eq. (2.5.1) in the norm of
the space H, that is,

‖Rα(δ) f
δ − A† f ‖H → 0, δ → 0. (2.5.23)

Proof Let us estimate the norm ‖Rα(δ) f δ − A† f ‖H using (2.4.13) and (2.5.21). We
have

‖Rα(δ) f
δ − A† f ‖2H :=

∞∑
n=1

∥∥∥∥
(
q(α(δ);σn)

σn
( f δ, vn) − 1

σn
( f, vn)

)
un

∥∥∥∥
2

=
∞∑
n=1

∥∥∥∥
(
q(α(δ);σn)

σn
( f δ − f, vn) +

(
q(α(δ);σn)

σn
− 1

σn

)
( f, vn)

)
un

∥∥∥∥
2

≤ 2
∞∑
n=1

q2(α(δ);σn)

σ2
n

|( f δ − f, vn)|2 + 2
∞∑
n=1

α2(δ)

σ2
n(σ

2
n + α(δ))2

|( f, vn)|2. (2.5.24)

Denote by S1 and S2 the first and the second summands on the right-hand side of
(2.5.24), respectively.

We use from (2.5.14) the property q2(α;σn)/σ
2
n ≤ 1/(4α) of the filter function

and Parseval’s identity to estimate the term S1:

S1 ≤ 1

2α(δ)

∞∑
n=1

|( f δ − f, vn)|2 ≤ 1

2α(δ)
‖ f δ − f ‖2 ≤ δ2

2α(δ)
. (2.5.25)

For estimating the term S2 we rewrite it in the following form:

S2 = 2
N∑

n=1

α2(δ)

σ2
n(σ

2
n + α(δ))2

|( f, vn)|2 + 2
∞∑

n=N+1

α2(δ)

σ2
n(σ

2
n + α(δ))2

|( f, vn)|2

=: S2N + R2N . (2.5.26)

To estimate the N th partial sum S2N we use the properties σ1 ≥ σ2 ≥ . . . ≥ σn ≥
. . . > 0 and σn → 0, as n → ∞, of the singular values. For any small value α =
α(δ) > 0 of the parameter of regularization, depending on the noise level δ > 0,
there exists such a positive integer N = N (α(δ)) ≡ N (δ) that

min
1≤n≤N (δ)

σ2
n = σ2

N (δ) ≥ √
α(δ) > σ2

N (δ)+1, (2.5.27)
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where N = N (α(δ)) → ∞, as δ → 0. For such N = N (δ) we estimate the N th
partial sum S2N in (2.5.26) as follows:

S2N ≤ 2α2(δ)

(σ2
N (δ) + α(δ))2

N (δ)∑
n=1

1

σ2
n

|( f, vn)|2

= 2α(δ)

(σ2
N (δ)/

√
α(δ) + √

α(δ))2

N (δ)∑
n=1

1

σ2
n

|( f, vn)|2

By the condition (2.5.27), σ2
N (δ)/

√
α(δ) ≥ 1. Hence

S2N ≤ 2α(δ)

(1 + √
α(δ))2

N (δ)∑
n=1

1

σ2
n

|( f, vn)|2. (2.5.28)

Let us estimate now the series remainder term R2N defined in (2.5.26). We have

R2N = 2
∞∑

n=N (δ)+1

1

(σ2
n/α(δ) + 1)2

1

σ2
n

|( f, vn)|2

≤ 2
∞∑

n=N (δ)+1

1

σ2
n

|( f, vn)|2.

Taking into account this estimate with estimates (2.5.25) and (2.5.28) in (2.5.24)
we finally deduce:

‖Rα(δ) f
δ − A† f ‖2H ≤ δ2

2α
+ 2α(δ)

(1 + √
α(δ))2

N (δ)∑
n=1

1

σ2
n

|( f, vn)|2

+2
∞∑

n=N (δ)+1

1

σ2
n

|( f, vn)|2. (2.5.29)

The first right hand side term tends to zero, as δ → 0, by the second condition of
(2.5.22). The factor before the partial sum of the second right hand side term tends to
zero, sinceα(δ) → 0, as δ → 0, by the first condition of (2.5.22), and this partial sum
is finite due to the convergence condition (2.4.12) of the Picard’s Theorem 2.4.1. The
third right hand side term also tends to zero, as δ → 0, since in this case N (δ) → ∞,
and, as a result, the series remainder term tends to zero, by the same convergence
condition. This implies (2.5.23). �

Estimate (2.5.29) clearly shows the role of all parameters δ > 0, α(δ) > 0 and
N = N (δ) in the regularization strategy.

As we have seen in the previous section, the number N of first terms in singular
value expansion of a compact operator can also be considered as a regularization
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parameter. As noted above in iterative methods, the number of iterations also plays
role of the regularization parameter, that is, α ∼ 1/N . For more detailed analysis of
regularization methods for ill-posed problems we refer to the books [23, 54, 90].

Remark finally that besides the Tikhonov regularization, there are other regular-
ization methods, such as Lavrentiev regularization, asymptotic regularization, local
regularization, etc. Since zero is the only accumulation point of the singular val-
ues of a compact operator, the underlying idea in all these regularization techniques
is modifying the smallest singular values, shifting all singular values by α > 0. In
other words, the idea is to approximate the compact operator A or A∗A by a family
of operators A + αI or A∗A + αI . The first one corresponds to Lavrentiev regular-
ization. Specifically, while Tikhonov regularization is based on the normal equation
A∗Au = A∗ f δ , Lavrentiev regularization is based on the original equation Au = f δ .
The main advantage of the first approach over the second one is that the operator
A∗A is always injective, due to Lemma 2.3.1, even if the operator A :�→ H̃ is not
injective. The second advantage of Tikhonov regularization is that the class of admis-
sible values of the parameter of regularization α > 0 for convergent regularization
method is larger than the same class in Lavrentiev regularization. Specifically, when
α = δ the condition δ2/α(δ) → 0, as δ → 0, for convergent regularization strategy
in Tikhonov regularization holds, but does not hold in Lavrentiev regularization, as
we will see below.

Corollary 2.5.2 can be adopted to the case of Lavrentiev regularization when the
linear bounded injective operator A : H �→ H is self-adjoint and positive semidefi-
nite.

Corollary 2.5.3 Let conditions of Theorem 2.4.1 hold and f δ ∈ R(A). Then the
unique solution uδ

α ∈ H of the regularized equation

(A + αI ) uδ
α = f δ (2.5.30)

can be represented as the series

uδ
α =

∞∑
n=1

q̃(α;σn)

σn
( f δ, un)un, α > 0, (2.5.31)

where

q̃(α;σ) = σ

σ + α
. (2.5.32)

Proof We use the singular system {σn, un, un} for the non-self-adjoint operator A :
H �→ H̃ , that is, Aun = σnun and the representation

uδ
α =

∞∑
m=1

cmum . (2.5.33)
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Substituting this into the normal Eq. (2.5.30) we obtain:

∞∑
m=1

(σm + α)cmum = f δ.

Multiplying both sides by un we find the unknown parameters cm :

cm = 1

σm + α
( f δ, um)

Using this in (2.5.33) we find:

uδ
α =

∞∑
m=1

1

σm + α

(
f δ, um

)
um .

By (2.5.32), this is exactly the required expansion (2.5.31). �

Now the question we seek to answer here is that under which conditions it is
possible to construct a convergent regularization strategy for Lavrentiev regulariza-
tion. The following theorem, which is an analogue of Theorem 2.5.2, answers this
question.

Theorem 2.5.3 Let the linear bounded injective operator A : H �→ H̃ be a self-
adjoint and positive semi-definite. Assume that conditions of Theorem 2.4.1 hold.
Denote by f δ ∈ R(A) the noisy data: ‖ f − f δ‖H̃ ≤ δ, δ > 0. Suppose that the
following conditions hold:

α(δ) → 0 and
δ

α(δ)
→ 0, as δ → 0. (2.5.34)

Then the operator Rα(δ) defined by the right hand side of (2.5.31) is a convergent
regularization strategy, that is,

Rα(δ) f
δ :=

∞∑
n=1

q̃(α(δ);σn)

σn
( f δ, un)un, α > 0, (2.5.35)

that is, the solution uδ
α := Rα(δ) f δ of the regularized form of the normal Eq. (2.5.30)

converges to the best approximate solution u := A† f of Eq. (2.5.1) in the norm of
the space H.

Proof The proof is similar to the proof of Theorem2.5.2. Here we first use the
following property

σ

σ + α
≤ σ

α
(2.5.36)
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of the filter function (2.5.32) in (2.5.24) to obtain the estimate

‖Rα(δ) f
δ − A† f ‖2H :=

∞∑
n=1

∥∥∥∥
(
q̃(α(δ);σn)

σn
( f δ, un) − 1

σn
( f, un)

)
un

∥∥∥∥
2

≤ 2
∞∑
n=1

q̃2(α(δ);σn)

σ2
n

|( f δ − f, un)|2 + 2
∞∑
n=1

α2(δ)

σ2
n(σn + α(δ))2

|( f, un)|2 .(2.5.37)

Denote by S1 and S2 the first and the second right-hand side summands of (2.5.37),
respectively. By (2.5.36) we conclude q̃2(α;σn)/σ

2
n ≤ 1/α2. Using this inequality

in (2.5.37) we obtain the estimate

S1 := 2
∞∑
n=1

q̃2(α(δ);σn)

σ2
n

|( f δ − f, un)|2 ≤ 1

α2(δ)
‖ f δ − f ‖2 ≤ δ2

α2(δ)
.(2.5.38)

Second, we rewrite the term S2 in the following form:

S2 = 2
N∑

n=1

α2(δ)

σ2
n(σn + α(δ))2

|( f, un)|2 + 2
∞∑

n=N+1

α2(δ)

σ2
n(σn + α(δ))2

|( f, un)|2

=: S2N + R2N . (2.5.39)

For estimating the first right hand side term S2 in (2.5.39), we use the properties
σ1 ≥ σ2 ≥ . . . ≥ σn ≥ . . . > 0, σn → 0, as n → ∞, of the eigenvalues λn = σn of
self-adjoint positive semidefinite operator A. For any small values α = α(δ) > 0 of
the parameter of regularization, depending on the noise level δ > 0, there exists such
a positive integer N = N (α(δ)) ≡ N (δ) that

min
1≤n≤N (δ)

σ2
n = σ2

N (δ) ≥ α(δ) > σ2
N (δ)+1, (2.5.40)

where N = N (α(δ)) → ∞, as δ → 0. For such N = N (δ) we get the following
estimate for S2N in (2.5.39):

S2N ≤ 2α2(δ)

(σN (δ) + α(δ))2

N (δ)∑
n=1

1

σ2
n

|( f, vn)|2

= 2α(δ)

(σN (δ)/
√

α(δ) + √
α(δ))2

N (δ)∑
n=1

1

σ2
n

|( f, vn)|2

By the condition (2.5.40), σN (δ)/
√

α(δ) ≥ 1, which implies:
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S2N ≤ 2α(δ)
N (δ)∑
n=1

1

σ2
n

|( f, un)|2. (2.5.41)

The factor before the above partial sum, which is finite by the convergence condition
(2.4.12) of the Picard’s Theorem 2.4.1, tends to zero, asα(δ) → 0. Hence, S2N → 0,
as α(δ) → 0.

Let us estimate now the series remainder term R2N defined in (2.5.39). We have

R2N = 2
∞∑

n=N (δ)+1

1

(σn/α(δ) + 1)2
1

σ2
n

|( f, vn)|2

≤ 2
∞∑

n=N (δ)+1

1

σ2
n

|( f, vn)|2.

Substituting this estimate with (2.5.38) and (2.5.41) into (2.5.37) we conclude:

‖Rα(δ) f δ − A† f ‖2H ≤
δ2

α(δ)2
+ 2α(δ)

∑N (δ)
n=1

1
σ2
n
|( f, un)|2 + 2

∑∞
n=N (δ)+1

1
σ2
n
|( f, vn)|2 . (2.5.42)

It is easy to verify that under the conditions (2.5.34) all three right hand side terms
tend to zero, as δ → 0. �

Comparing the convergence conditions in Theorems 2.5.2 and 2.5.3 we first
observe that, in Tikhonov regularization the class of admissible values of the para-
meter of regularization α > 0 for convergent regularization method is larger than
the same class in Lavrentiev regularization. While, for example, in Tikhonov reg-
ularization the values α = δ and α = √

δ of the parameter of regularization are
admissible for convergent regularization method, as the second condition of (2.5.22)
shows, in Lavrentiev regularization they are not admissible by the condition (2.5.34).
Moreover, the dependence on the parameter of regularization α > 0 of the numbers
N = N (α(δ)), defined in proofs of these theorems and corresponding to these regu-
larizations, are different. Thus, if σn = O(1/n2), then condition (2.5.27) of Theorem
2.5.2 implies that there exists the constants c2 > c1 > 0 such that

c2
N 4

≥ √
α(δ) >

c1
(N + 1)4

.

For the same σn = O(1/n2), the condition (2.5.40) of Theorem 2.5.3 implies:

c̃2
N 4

≥ α(δ) >
c̃1

(N + 1)4
, c̃2 > c̃1 > 0.

As a result, N (α(δ)) = O (
α(δ)−1/8

)
in Tikhonov regularization and N (α(δ)) =

O (
α(δ)−1/4

)
in Lavrentiev regularization.
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Note, finally that the topic of Tikhonov regularization is very broad and here we
described it for only linear inverse problems. We refer the reader to the books [48,
90] on themathematical theory of regularizationmethods related to nonlinear inverse
problems.

2.6 Morozov’s Discrepancy Principle

In applications the right hand side f ∈ H of the equation Au = f always contains a
noise. Instead of this equation one needs to solve the equation Auδ = f δ , where f δ

is a noisy data: ‖ f − f δ‖ ≤ δ, where δ > 0. This, in particular, implies that in the
ideal case the residual or discrepancy ‖Auδ − f δ‖ can only be at most in the order
of δ. On the other hand, in order to construct a bounded approximation Rα(δ) of the
unbounded operator A† one needs to choose the parameter of regularization α > 0
depending on the noise level δ > 0. Thus, the parameter of regularization needs to
be chosen by a compromise between the residual ‖Auδ − f δ‖ and the given bound
δ > 0 for the noise level. This is themain criteria of so-calledMorozov’s Discrepancy
Principle due to Morozov [67, 68]. This principle is now one of the simplest tools
and most widely used regularization method for ill-posed problems.

Definition 2.6.1 Let f δ ∈ H̃ be a noisy data with an arbitrary given noise level
δ > 0, that is, ‖ f δ − f ‖ ≤ δ, where f ∈ R(A) is a noise free (exact) data. If there
exists such a value α = α(δ) of the parameter of regularization, depending on δ > 0,
that the corresponding solution uδ

α(δ) ∈ H of the equation Au = f δ satisfies the
condition

β1δ ≤ ‖Auδ
α(δ) − f δ‖ ≤ β2δ, β2 ≥ β1 ≥ 1, (2.6.1)

then the parameter of regularization α = α(δ) is said to be chosen according to
Morozov’s Discrepancy Principle.

Let us assume that the size δ := ‖δ f ‖ = ‖ f δ − f ‖ > 0 of the noise is known
(although we do not know the random perturbation δ f ). Denote by u ∈ N (A)⊥ the
solution of the equation Au = f with a noise free (exact) data f ∈ N (A∗)⊥ = R(A).
Then

‖Au − f δ‖ = ‖Au − f − δ f ‖ = ‖δ f ‖ =: δ, δ > 0.

Thus, if u is the exact solution, corresponding to the exact data f , and f δ is the noisy
data, then

‖Au − f δ‖ = δ. (2.6.2)

Now, having the size δ = ‖ f − f δ‖ > 0 of noise, we want to use Tikhonov reg-
ularization to find the solution uδ

α defined by (2.5.7) and corresponding to the
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noisy data f δ := f + δ f . Then, as it follows from (2.6.2), the best that we can
require from the parameter of regularization α > 0 is the residual (or discrepancy)
‖Auδ

α(δ) − f δ‖ = δ.
We prove that there exists such a value of the parameter of regularizationα = α(δ)

which satisfies the following conditions:

‖Auδ
α(δ) − f δ‖ = ‖ f − f δ‖ = δ, δ > 0. (2.6.3)

Theorem 2.6.1 Let conditions of Theorem 2.4.1 hold. Denote by f δ ∈ H̃ the noisy
data with ‖ f δ‖ > δ > 0. Then there exists a unique valueα = α(δ) of the parameter
of regularization satisfying conditions (2.6.3).

Proof By the unique decomposition, for any f δ ∈ H̃ = R(A) ⊕ R(A)⊥ we have

f δ =
∞∑
n=1

( f δ, vn)vn + P f δ, (2.6.4)

where P f δ ∈ R(A)⊥ is the projection of the noisy data onR(A)⊥.
Now we rewrite the solution uδ

α, given by (2.5.11), of the normal Eq. (2.5.6) in
the following form:

uδ
α =

∞∑
n=1

σn

σ2
n + α

( f δ, vn)un, α > 0. (2.6.5)

Acting on this solution by the operator A and using the relation Aun = σnvn we
deduce:

Auδ
α =

∞∑
n=1

σ2
n

σ2
n + α

( f δ, vn)vn.

With (2.6.4) this yields:

f δ − Auδ
α =

∞∑
n=1

α

σ2
n + α

( f δ, vn)vn + P f δ.

Then we obtain the discrepancy:

‖Auδ
α − f δ‖2 =

∞∑
n=1

α2

(
σ2
n + α

)2 |( f δ, vn)|2 + ‖P f δ‖2. (2.6.6)

It can be verified that g(α) := ‖Auδ
α − f δ‖ is a monotonically increasing function

for α > 0. To complete the proof of the theorem we need to show that the equation
g(α) = δ, α ∈ (0,+∞), has a unique solution. For α → 0+ we use P f = 0 for the
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noise free data f ∈ R(A) to get

lim
α→0+

g(α) = ‖P f δ‖ = ‖P( f δ − f )‖ ≤ ‖ f δ − f ‖ = δ, (2.6.7)

by (2.6.3). Note that the sum in (2.6.6) tends to zero, as α → 0+.
For α → +∞ we use the following limit

lim
α→+∞

α2

(
σ2
n + α

)2 = lim
α→+∞

1(
σ2
n/α

2 + 1
)2 = 1

and the identity (2.1.8) to get

lim
α→+∞ g(α) =

( ∞∑
n=1

|( f δ, vn)|2 + ‖P f δ‖2
)1/2

=: ‖ f δ‖,

by (2.6.6).
By the assumption ‖ f δ‖ > δ we conclude:

lim
α→+∞ g(α) > δ.

This implies with (2.6.7) that the equation g(α) = δ has a unique solution for α ∈
(0,+∞). �

Remark that ‖ f δ‖ > δ > 0 is a natural condition in the theorem. Otherwise, i.e.
if ‖ f δ‖ < δ, then uδ

α(δ) = 0 can be assigned as a regularized solution.
The theorem below shows that Morozov’s Discrepancy Principle provides a con-

vergent regularization strategy. First we need the following notion.

Definition 2.6.2 Let A : H �→ H̃ be a linear injective compact operator between
Hilbert spaces H and H̃ , and A∗ : H̃ �→ H its adjoint. Denote by u ∈ H the solution
u = A† f of the equation Au = f with the noise free (exact) data f ∈ R(A). If there
exists such an element v ∈ H̃ with ‖v‖H̃ ≤ M that u = A∗v, then we say that u ∈ H
satisfies the source condition.

Remark that besides of the classical concept of source condition, in recent years
different new concepts, including approximate source conditions, have been devel-
oped [44].

Theorem 2.6.2 Let A : H �→ H̃ be a linear injective compact operator between
Hilbert spaces H and H̃ . Assume that the solution u = A† f of the equation Au = f
with the noise free data f ∈ R(A) satisfies the source condition. Suppose that the
parameter of regularization α = α(δ), δ > 0, is defined according to conditions
(2.6.3). Then the regularization method Rα(δ) is convergent, that is,

‖Rα(δ) f
δ − A† f ‖H → 0, δ → 0, (2.6.8)
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where f δ ∈ H̃ is the noisy data and Rα(δ) f δ =: uδ
α(δ) is the regularized solution.

Proof uδ
α(δ) furnishes a minimum to the regularized Tikhonov functional,

Jα(v) := 1

2
‖Av − f δ‖2

H̃
+ 1

2
α‖v‖2H , v ∈ H, f δ ∈ H̃ . (2.6.9)

Hence Jα(uδ
α(δ)) ≤ Jα(v), for all v ∈ H . In particular, for the unique solution u ∈

N (A)⊥ of the equation Au = f with the noise free data f ∈ R(A) we have:

Jα(u
δ
α(δ)) ≤ Jα(u). (2.6.10)

According to (2.6.3), ‖Auδ
α(δ) − f δ‖ = δ and ‖Au − f δ‖ = δ, δ > 0. Taking into

account this in (2.6.9) we conclude:

Jα(u
δ
α(δ)) = 1

2
δ2 + 1

2
α‖uδ

α(δ)‖2H ,

Jα(u) = 1

2
δ2 + 1

2
α‖u‖2H .

This implies that with (2.6.10) that

‖uδ
α(δ)‖H ≤ ‖u‖H , ∀δ > 0, α > 0, (2.6.11)

i.e. the set {uδ
α(δ)}δ>0 is uniformly bounded in H by the norm of the solution u ∈

N (A)⊥ of the equation Au = f .
Having the uniform boundedness of {uδ

α(δ)}δ>0 we estimate now the difference
between the regularized and exact solutions:

‖uδ
α(δ) − u‖2 = ‖uδ

α(δ)‖2 − 2Re(uδ
α(δ), u) + ‖u‖2

≤ 2
(‖u‖2 − Re(uδ

α(δ), u)
) = 2Re(u − uδ

α(δ), u).

Since u = A∗v, we transform this estimate as follows:

‖uδ
α(δ) − u‖2 ≤ 2Re(u − uδ

α(δ), A
∗v) = 2Re(Au − Auδ

α(δ), v)

= 2Re( f − Auδ
α(δ), v) ≤ 2Re( f − f δ, v) + 2Re( f δ − Auδ

α(δ), v)

≤ 2‖v‖ [‖ f − f δ‖ + ‖ f δ − Auδ
α(δ)‖

]
.

Using conditions (2.6.3) and ‖v‖H̃ ≤ M on the right hand side we finally get:

‖uδ
α(δ) − u‖ ≤ 2

√
Mδ. (2.6.12)

The right hand side tends to zero as δ → 0+, which is the desired result. �
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Remark 2.6.1 Estimate (2.6.12) depends on the norm of the element v ∈ H̃ which
image u = A∗v under the adjoint operator A∗ : H̃ �→ H is the solution of the equa-
tion Au = f with the noise free data f ∈ R(A). This element v ∈ H̃ is called a
sourcewise element. In this we say that the exact solution u = A† f satisfies the
source condition u = A∗v, v ∈ H̃ .

In applications, it is not necessary to satisfy the condition (2.6.3) exactly. Instead,
the relaxed form condition

β∗δ ≤ ‖Auδ
α(δ) − f δ‖ ≤ β∗δ, β∗ > β∗ > 0, δ > 0 (2.6.13)

can be used.
Therefore, if the noise level δ > 0 is known, then in the iteration algorithm one

of the forms of condition (2.6.13) is used as a stopping rule, according to Morozov’s
Discrepancy Principle. Iteration is terminated if

‖Auδ,n(δ)
α(δ) − f δ‖ ≤ τMδ < ‖Auδ,n(δ)−1

α(δ) − f δ‖, τM > 1, δ > 0, (2.6.14)

that is, if for the first time the condition

‖Auδ,n(δ)
α(δ) − f δ‖ ≤ τMδ τM > 1, δ > 0 (2.6.15)

holds. Here τM > 1 is a fixed parameter.



Chapter 3
Inverse Source Problems with Final
Overdetermination

Inverse source problems for evolution PDEs ut = Au + F , t ∈ (0, T f ], represent a
well-known area in inverse problems theory and has many engineering applications.
These problems play a key role in providing estimations of unknown and inaccessible
source terms involved in the associated mathematical model, using some measured
data. An inverse problem with the final overdetermination uT := u(T ), T > 0, for
one-dimensional heat equation has first been considered by A.N. Tikhonov in study
of geophysical problems [93]. In this work the heat equation with prescribed lateral
and final data is studied in half-plane and the uniqueness of the bounded solution
is proved. For parabolic equations in a bounded domain, when in addition to usual
initial and boundary conditions, a solution is given at the final time, well-posedness
of inverse source problem has been proved by Isakov [46, 47].

In this chapter we study inverse source problems for one-dimensional linear evo-
lution equations with final overdetermination. The main reason of considering of
this class of problems is to demonstrate an understanding of major concepts of
inverse problems. First, we discuss the most widely studied and classical inverse
source problem with final overdetermination for one-dimensional heat equation.
Along with the other objectives of this chapter, we will show how the unique reg-
ularized solution obtained by Tikhonov regularization applied to the input-output
operator � : H �→ H̃ is related to the Singular Value Decomposition (SDV) of the
Moore-Penrose inverse �† := (�∗�)−1�∗, of this operator. For this aim, an adjoint
problem, corresponding to each considered inverse source problem is introduced.
This allows to derive a gradient formula for the Fréchet derivative J ′

α(F) of the reg-
ularized Tikhonov functional Jα(F) via the weak solution of the adjoint problem.
Using the gradient formula and solving the equation J ′

α(F) = 0 with respect to the
unknown source F , a quasi-solution of the inverse problem is obtained as a singular
value expansion of the Moore-Penrose inverse �†. This approach allows to show
that final data inverse source problems for parabolic and hyperbolic equations, as
well as backward parabolic problem, have the same filter function q(σn, α), but with
different singular values σn .

© Springer International Publishing AG 2017
A. Hasanov Hasanoğlu and V.G. Romanov, Introduction to Inverse
Problems for Differential Equations, DOI 10.1007/978-3-319-62797-7_3
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3.1 Inverse Source Problem for Heat Equation

In this section we demonstrate Tikhonov regularization method and Singular Value
Decomposition of Compact Operators for heat source identification problem with
final data measurement. In the variable coefficient case we will develop an adjoint
problem approach based on weak solution theory for PDEs. This approach allows
not only to derive an explicit gradient formula for the Fréchet derivative of the
regularized Tikhonov functional, but also permits to prove the Lipschitz continuity
of this gradient [38]. In the constant coefficient case, we will prove that the solution
of the nonlinear equation J ′

α(F) = 0 is the singular value expansion of the unique
minimizer of the regularized Tikhonov functional.

Consider one dimensional heat conduction in a finite homogeneous rod, occupy-
ing the interval (0, l), where the source term has the following form: F(x)G(x, t).
Assume that this process is governed by the following mixed initial-boundary value
problem:

⎧
⎨

⎩

ut = (k(x)ux )x + F(x)G(x, t), (x, t) ∈ �T ;
u(x, 0) = f (x), x ∈ (0, l);
u(0, t) = 0, ux (l, t) = 0, t ∈ (0, T ],

(3.1.1)

where �T := {0 < x < l, 0 < t ≤ T } and T > 0 is the final time and k(x) > 0
is the thermal conductivity. The initial and boundary conditions are assumed to be
homogeneous without loss of generality, since the parabolic problem is linear.

It is assumed in the considered model (3.1.1) that the spacewise-dependent source
F(x) is unknown and needs to be identified from the measured temperature

uT (x) := u(x, T ), x ∈ (0, l), (3.1.2)

at the final time T > 0. The final time measured output uT is assumed to be non-
smooth, that is uT ∈ L2(0, l) and can contain a random noise.

The problem of determining the pair 〈u(x, t), F(x)〉 in (3.1.1) and (3.1.2) will be
defined as an inverse source problem with final data for heat equation. For a given
function F(x) from some class of admissible sources, the problem (3.1.1) will be
referred as a direct (or forward) problem.

An analysis of inverse problems given in this chapter will be based on weak
solution theory for PDEs, since in practice, input and output data may not be smooth.
Assuming that these data satisfy the following conditions

{
k ∈ L∞(0, l), 0 < k0 ≤ k(x) ≤ k1 < ∞,

f, F ∈ L2(0, l), G ∈ L2(0, T ; L∞(0, l)),
(3.1.3)

where the norm in the Banach space L2(0, T ; L∞(0, l)) is defined as follows:
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‖G‖L2(0,T ;L∞(0,l)) :=
(∫ T

0
‖G‖2L∞(0,l)dt

)1/2

,

We will define the weak solution of the direct problem (3.1.1) as a function u ∈
L2(0, T ;V(0, l)), with ut ∈ L2(0, T ; H−1(0, l)), satisfying the integral identity

∫ l

0
(utv + k(x)uxvx )dx =

∫ l

0
F(x)G(x, t)v(x)dx, a.e. t ∈ (0, T ), (3.1.4)

and the condition u(x, 0) = f (x), x ∈ (0, l), for every v ∈ V(0, l), where V(0, l) :=
{v ∈ H 1(0, l) : v(0) = 0}. Here and below H 1(0, l) is the Sobolev space of
functions which consists of all integrable real functions v : (0, l) �→ R such that
v, vx ∈ L2(0, l) and H−1(0, l) is the dual space of H 1(0, l).

Remark that the definition u ∈ L2(0, T ;V(0, l)) of the weak solution does not
directly imply the continuity of this solution with respect to the time variable t ∈
(0, T ]. Hence, it is not clear in this definition the pointwise values u(x, 0) and u(x, T )

at the initial and final times. As it is follows from the theorem below, the conditions
u ∈ L2(0, T ;V(0, l)) and ut ∈ L2(0, T ; H−1(0, l)) imply u ∈ C([0, T ]; L2(0, l)),
which means that values u(x, 0) and u(x, T ) are well defined (see [24], Chap. 5.9,
Theorem 3).

Theorem 3.1.1 Let u ∈ L2(0, T ;V(0, l)) and ut ∈ L2(0, T ; H−1(0, l)).
(i) Then u ∈ C([0, T ]; L2(0, l)).
(ii)The real valued function t �→ ‖u(·, t)‖2L2(0,l) is weakly differentiable and

1

2

d

dt

∫ l

0
u2(x, t)dx =

∫ l

0
ut (x, t)u(x, t)dx, for a.e. t ∈ (0, T );

(iii) There exists a constant C0 = C0(T ) > 0 such that the following estimate holds:

max
t∈[0,T ] ‖u‖L2(0,l) ≤ C0

(‖u‖L2(0,T ;V(0,l)) + ‖ut‖L2(0,T ;H−1(0,l))
)
. (3.1.5)

Theorem3.1.1 with estimate (3.1.5) shows, in particular, that as a function of
t ∈ [0, T ], u(x, t) can be identified with its continuous representative and the initial
and final time values u(x, 0) and u(x, T ), x ∈ [0, l], make sense.

The above defined weak solution satisfies the following estimate (see [24], Chap.
7.1, Theorem 2):

max
t∈[0,T ] ‖u‖L2(0,l) + ‖u‖L2(0,T ;V(0,l)) + ‖ut‖L2(0,T ;H−1(0,l)) ≤

C1
[‖FG‖L2(0,T ;L2(0,l)) + ‖ f ‖L2(0,l)

]
, (3.1.6)

where the constant C1 > 0 depends T, l > 0 and the coefficient k(x).
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In subsequent analysis of the inverse problem (3.1.1) and (3.1.2), we need to write
the norm of the unknown spacewise-dependent source F(x) in a separate term on
the right hand side of (3.1.5). For this aim, we use the condition in (3.1.3) for the
function G(x, t) and the estimate:

‖FG‖L2(0,T ;L2(0,l)) :=
(∫ T

0
‖FG‖2L2(0,l)dt

)1/2

≤

‖F‖L2(0,l)

(∫ T

0
‖G‖2L∞(0,l)dt

)1/2

=: ‖F‖L2(0,l)‖G‖L2(0,T ;L∞(0,l). (3.1.7)

Using this estimate in (3.1.6) we get:

max
t∈[0,T ] ‖u‖L2(0,l) + ‖u‖L2(0,T ;V(0,l)) + ‖ut‖L2(0,T ;H−1(0,l)) ≤

C1
(‖F‖L2(0,l)‖G‖L2(0,T ;L∞(0,l)) + ‖ f ‖L2(0,l)

)
. (3.1.8)

If the coefficient k(x) is smooth and the initial data f (x) is more regular, then the
regularity of the above defined weak solution increases. Specifically, if, in addition
to condition (3.1.3), the conditions

k ∈ C1(0, l), f ∈ V(0, l), Gt ∈ L2(0, T ; L2(0, l)) (3.1.9)

also hold, then we can define the regular weak solution of the direct problem (3.1.1).
As the above weak solution, this solution is defined initially in L2(0, T ; H 2(0, l)) ∩
L∞(0, T ;V(0, l)), with ut ∈ L2(0, T ; L2(0, l)). Then, in order to get a map-
ping to a better space, it can be proved that if u ∈ L2(0, T ; H 2(0, l)), with
ut ∈ L2(0, T ; L2(0, l)), then u ∈ C([0, T ]; H 1(0, l)) (see Theorem 4 [24], Chap.
5.9). This result is given by the following extension of Theorem3.1.1.

Theorem 3.1.2 Let u ∈ L2(0, T ; H 2(0, l)) and ut ∈ L2(0, T ; L2(0, l)).
(i) Then u ∈ C([0, T ]; H 1(0, l)), and hence, u ∈ C([0, T ] × (0, l)).
(ii) Furthermore, the following estimate holds:

max
t∈[0,T ] ‖u‖H 1(0,l) ≤ C2

(‖u‖L2(0,T ;H 2(0,l)) + ‖ut‖L2(0,T ;L2(0,l))
)
, (3.1.10)

where the constant C2 > 0 depends only on T > 0 and l > 0.

This is an adopted version of Theorem 4 (see [24], Chap. 5.9) to the considered
case. This theorem with estimate (3.1.10), implies that, for a fixed t ∈ [0, T ] the
function u(x, t), as a one dimensional function of x ∈ (0, l), is an element of the
space H 1(0, l).
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For the regular weak solution the following estimate holds (see [24], Chap. 7.1,
Theorem 5):

ess sup
t∈[0,T ]

‖u‖V(0,l) + ‖u‖L2(0,T ;H 2(0,l)) + ‖ut‖L2(0,T ;L2(0,l)) ≤

C3
[‖F‖L2(0,l)‖G‖L2(0,T ;L∞(0,l)) + ‖ f ‖V(0,l)

]
, (3.1.11)

where the constant C3 > 0 depends on the final time T > 0 and the constants
l, k0, k1 > 0.

Details of the weak solution theory for evolution PDEs can be found in [24].

3.1.1 Compactness of Input-Output Operator
and Fréchet Gradient

Let u(x, t; F) be the weak solution of (3.1.1) for a given F ∈ L2(0, l). We intro-
duce the input-output operator � : L2(0, l) �→ L2(0, l), defined as (�F)(x) :=
u(x, T ; F), x ∈ (0, l), that is, operator � transforms each admissible input F(x)
to the output u(x, T ; F). Then the inverse source problem, defined by (3.1.1) and
(3.1.2), can be reformulated as the following operator equation:

�F = uT , uT ∈ L2(0, l). (3.1.12)

Let us analyze the compactness of the input-output operator � : L2(0, l) �→
L2(0, l). Due to linearity of the problem, we may assume here that the initial data is
zero: f (x) = 0.

Lemma 3.1.1 Let conditions (3.1.3) and (3.1.9) hold. Then the input-output opera-
tor

� : F ∈ L2(0, l) �→ u(x, T ; F) ∈ L2(0, l) (3.1.13)

is a linear compact operator.

Proof Let {Fm} ⊂ L2(0, l)be a bounded sequence. Then the sequence of correspond-
ing regular weak solutions {u(x, t; Fm)} of the direct problem (3.1.1) is bounded,
due to estimate (3.1.11). In particular, the sequence {um}, um := u(x, T ; Fm), is
bounded in the norm of V(0, l). By the compact imbedding V(0, l) ↪→ L2(0, l),
there is a subsequence {un} of {um} which converges in L2-norm. Hence the input-
output operator transforms any bounded in L2(0, l) sequence {Fm} to the compact
sequence {un} in L2(0, l). �

Remark 3.1.1 If the initial data is not zero, then assuming that condition (3.1.9) also
hold, we obtain that the input-output operator is an affine compact operator.
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It follows from Lemma3.1.1 that the inverse problem (3.1.12) or (3.1.1 and 3.1.2)
is ill-posed. Then we may use Tikhonov regularization

Jα(F) = J (F) + 1

2
α‖F‖2L2(0,l), (3.1.14)

introducing the Tikhonov functional

J (F) = 1

2
‖u(·, T ; F) − uT ‖2L2(0,l), F ∈ L2(0, l) (3.1.15)

and the parameter of regularization α > 0. Since � is a linear compact operator,
by Theorem 2.1.1 the unique minimum Fα ∈ L2(0, l) of the regularized functional
(3.1.14) exists and is the solution of the regularized normal equation

(�∗� + α I )Fα = �∗uT , (3.1.16)

where �∗ : L2(0, l) �→ L2(0, l) is the adjoint operator. This unique solution can be
written as follows:

Fα = RαuT , Rα := (�∗� + α I )−1�∗ : L2(0, l) �→ L2(0, l), (3.1.17)

where the operator Rα : L2(0, 1) �→ L2(0, l), α > 0, is a regularization strategy.
Consider first the non-regularized case, when α = 0. The following lemma,

which establishes the gradient formula for Tikhonov functional (3.1.15), allows to
derive the Fréchet gradient J ′(F) of Tikhonov functional (3.1.15) via the solution of
corresponding (unique) adjoint problem solution ψ(x, t) and known source G(x, t).

Lemma 3.1.2 Let conditions (3.1.3) hold. Denote by u(x, t; F) is the weak solu-
tion of the parabolic problem (3.1.1) corresponding to a given F ∈ L2(0, l). Then
Tikhonov functional (3.1.15) is Fréchet differentiable and for the Fréchet gradient
J ′(F) the following gradient formula holds:

J ′(F)(x) = (ψ(x, ·; F),G(x, ·))L2(0,T ) :=
∫ T

0
ψ(x, t; F)G(x, t)dt, (3.1.18)

for a.e. x ∈ (0, l), where ψ(x, t; F) is the weak solution of the following adjoint
problem:

⎧
⎨

⎩

ψt = −(k(x)ψx )x , (x, t) ∈ �T ,

ψ(x, T ) = u(x, T ; F) − uT (x), x ∈ (0, l),
ψ(0, t) = 0, ψx (l, t) = 0, t ∈ [0, T ).

(3.1.19)

http://dx.doi.org/10.1007/978-3-319-62797-7_2
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Proof Assuming that F, F + δF ∈ L2(0, l), we calculate the increment δ J (F) :=
J (F + δF) − J (F) of functional (3.1.15):

δ J (F) =
∫ l

0
[u(x, T ; F) − uT (x)]δu(x, T ; F)dx

+1

2

∫ l

0
[δu(x, T ; F)]2dx, (3.1.20)

where δu(x, t; F) := u(x, t; F + δF) − u(x, t; F) is the weak solution of the
following parabolic problem

⎧
⎨

⎩

δut = (k(x)δux )x + δF(x)G(x, t), (x, t) ∈ �T ,

δu(x, 0) = 0, x ∈ (0, l),
δu(0, t) = 0, δux (l, t) = 0, t ∈ (0, T ].

(3.1.21)

We transform the first integral on the right hand side of (3.1.20), assuming that
ψ(x, t; F) and δu(x, t; F) are the solutions of problems (3.1.19) and (3.1.21),
accordingly. We have:

∫ l

0
[u(x, T ; F) − uT (x)]δu(x, T ; F)dx =

∫ l

0
ψ(x, T ; F)δu(x, t; F)dx

=
∫ l

0

{∫ T

0
(ψ(x, t; F)δu(x, t; F))t dt

}

dx

=
∫ ∫

�T

{ψt (x, t; F)δu(x, t; F) + ψ(x, t; F)δut (x, t; F)} dxdt

=
∫ ∫

�T

{−(k(x)ψx )xδu(x, t; F) + ψ(x, t; F)(k(x)δux )x } dxdt

+
∫ ∫

�T

δF(x)G(x, t)ψ(x, t; F)dxdt

=
∫ T

0
{−k(x)ψxδu + k(x)δuxψ}x=l

x=0 dt +
∫ ∫

�T

δF(x)G(x, t)ψ(x, t; F)dxdt.

Taking into account here the boundary conditions given in (3.1.19) and (3.1.21) we
obtain the following integral identity:

∫ l

0
[u(x, T ; F) − uT (x)]δu(x, T ; F)dx =

∫ ∫

�T

ψ(x, t; F)δF(x)G(x, t)dxdt,
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for all F, δF ∈ L2(0, l). With formula (3.1.20) this implies:

δ J (F) =
∫ l

0

(∫ T

0
ψ(x, t; F)G(x, t)dt

)

δF(x)dx +
1

2

∫ l

0
[δu(x, T ; F)]2dx . (3.1.22)

The last right hand side integral is of the order O
(
‖δF‖2L2(0,l)

)
by estimate (3.1.8).

This completes the proof of lemma. �

One of most important issues in numerical solution of inverse problems is the
Lipschitz continuity of the Fréchet gradient. Lemma3.4.4 in Sect. 3.4.3 shows that if
{F (n)} is the a sequence of iterations defined by the gradient algorithm, then J (F (n))

is a monotone decreasing sequence.

Lemma 3.1.3 Let conditions (3.1.3) hold. Then Fréchet gradient of Tikhonov func-
tional (3.1.15) is Lipschitz continuous,

‖J ′(F + δF) − J ′(F)‖L2(0,l) ≤ L1‖δF‖L2(0,l), ∀F, δF ∈ L2(0, l), (3.1.23)

with the Lipschitz constant L1 > 0, depending on T, k0, l > 0 and the norm MG =
‖G‖L2(0,T ;L∞(0,l)) of the given source term G(x, t).

Proof By definition,

‖J ′(F + δF) − J ′(F)‖L2(0,l) =
(∫ l

0

(∫ T

0
δψ(x, t; F)G(x, t)dt

)2

dx

)1/2

,

where δψ(x, t; F) := ψ(x, t; F + δF) − ψ(x, t; F) is the weak solution of the
problem:

⎧
⎨

⎩

δψt = −(k(x)δψx )x , (x, t) ∈ �T ;
δψ(x, T ) = δu(x, T ; F), x ∈ (0, l);
δψ(0, t) = 0, δψx (l, t) = 0, t ∈ [0, T ).

(3.1.24)

Applying the Hölder inequality we deduce that

‖J ′(F + δF) − J ′(F)‖L2(0,l) ≤ MG‖δψ(·, ·; F)‖L2(0,T ;L2(0,l)). (3.1.25)

Hence, we need to prove that the right hand side norm is of the orderO (‖δF‖L2(0,l)
)
.

Multiplying both sides of Eq. (3.1.24) by δψ(x, t; F), integrating on [0, l], applying
the integration byparts formula and thenusing the homogeneous boundary conditions
in (3.1.24), we obtain the following identity:
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1

2

d

dt

∫ l

0
(δψ(x, t; F))2 dx =

∫ l

0
k(x) (δψx (x, t; F))2 dx, t ∈ [0, T ].

Integrating this identity on [0, T ] using the condition δψ(x, T ) = δu(x, T ; F) in
(3.1.24) and applying then Poincaré inequality ‖ψx‖2L2(0,l) ≥ (2/ l2)‖ψ‖2L2(0,l) to the
right hand side integral, we conclude:

∫ T

0

∫ l

0
(δψ(x, t; F))2 dx ≤ l2

4k0

∫ l

0
(δu(x, T ; F))2 dx

where k0 > 0 is the constant in (3.1.3). The last integral is of the orderO
(
‖δF‖2L2(0,l)

)

by estimate (3.1.8), since δu(x, t; F) is the solution of problem (3.1.21). With esti-
mate (3.1.25) this implies the desired result. �

An implementation of the gradient formula (3.1.18) in Conjugate Gradient Algo-
rithm will be discussed in subsequent sections. Obviously, it is an implicit formula,
since the solutionψ(x, t; F) of the adjoint problem (3.1.19) depends on the unknown
source. We may use now formula (3.1.18) in (3.1.14) to obtain the gradient formula
for the regularized functional.

Corollary 3.1.1 For the Fréchet gradient of the regularized functional Jα(F), α >

0, defined by (3.1.14) the following formula holds:

J ′
α(F)(x) =

∫ T

0
ψ(x, t; F)G(x, t)dt + αF(x), a.e. x ∈ (0, l). (3.1.26)

Taking into account Corollary 2.5.1 in Sect. 2.5, we may rewrite the gradient
formula (3.1.26) for the regularized functional via the input-output mapping � :
L2(0, l) �→ L2(0, l) as follows:

J ′
α(F) = �∗ (�F − uT ) + αF, F ∈ L2(0, l). (3.1.27)

With the necessary condition J ′
α(F) = 0, formula (3.1.26) allows to derive the

following representation for the unique regularized solution of the inverse source
problem with final data.

Corollary 3.1.2 The unique regularized solution Fα ∈ L2(0, l) of the inverse prob-
lem (3.1.1) and (3.1.2) can be represented as follows:

Fα(x) = − 1

α

∫ T

0
ψ(x, t; Fα)G(x, t)dt, a.e. x ∈ (0, l), α > 0. (3.1.28)

This representation is an analogue of the representation

uδ
α = − 1

α
A∗(Auδ

α − f δ), f δ ∈ H̃ ,

http://dx.doi.org/10.1007/978-3-319-62797-7_2
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for the solution of the regularized normal equation (A∗A+ α I )uδ
α = f δ , introduced

in Sect. 2.5.

Remark 3.1.2 Let the source term in the heat equation (3.1.1) has the separable
form F(x)G(t). As it was shown above, the regularized solution Fα ∈ L2(0, l) of
the inverse problem (3.1.1) and (3.1.2) is defined uniquely for all G ∈ L2(0, T ), as
a solution of the normal equation (3.1.16). However, the non-regularized solution
F ∈ L2(0, l) of the inverse problem (3.1.1) and (3.1.2) may not be unique for all
G ∈ L2(0, T ). Specifically, the time dependent source G ∈ L2(0, T ) must ensure
the fulfillment of the condition σn �= 0, for all n ∈ N, as we will see in Sect.3.1.2. For
example, if the function G(t) satisfies the conditions G(t) > 0 and G ∈ L2(0, T ),
then σn �= 0, for all n ∈ N and the non-regularized solution is unique. In this case
the gradient formula (3.1.18) has the form:

J ′(F)(x) =
∫ T

0
ψ(x, t; F)G(t)dt ≡ �∗ (�F − uT ) (x), (3.1.29)

a.e. for all x ∈ (0, l).

3.1.2 Singular Value Decomposition of Input-Output
Operator

In this subsection we will assume that the source term in the heat equation (3.1.1)
has the separable form F(x)G(t), the time dependent source function G(t) satisfies
the conditions

‖G‖L2(0,l) > 0, G(t) ≥ 0, t ∈ [0, T ] (3.1.30)

and the initial data is zero: f (x) = 0. Specifically, consider the problem of deter-
mining the unknown space-wise dependent source F ∈ L2(0, l) in

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎨

⎩

ut = (k(x)ux )x + F(x)G(t), (x, t) ∈ �T ;
u(x, 0) = 0, x ∈ (0, l);
u(0, t) = 0, ux (l, t) = 0, t ∈ (0, T ];
uT (x) := u(x, T ), x ∈ (0, l).

(3.1.31)

where uT ∈ L2(0, l) is a noise free output satisfying the following consistency
conditions:

uT (0) = 0, u′(l) = 0. (3.1.32)

http://dx.doi.org/10.1007/978-3-319-62797-7_2
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First we will prove that the input-output operator � : L2(0, l) �→ L2(0, l) cor-
responding to the inverse problem (3.1.31) is a self-adjoint operator. Then we will
use the singular value decomposition (SVD) of compact operators on a Hilbert space
given in Sect. 2.4, to obtain singular value expansion of the regularized solution
Fα ∈ L2(0, l) of this inverse problem.

Lemma 3.1.4 Let conditions (3.1.3) and (3.1.30) hold. Then the input-output oper-
ator �, defined by (3.1.13) and corresponding to the inverse problem (3.1.31), is
self-adjoint and positive defined. Moreover,

(�ϕm)(x) = κmϕm(x), (3.1.33)

that is, {κm, ϕm} is the eigensystem of the input-output operator�, where {ϕn}∞n=1 are
orthonormal eigenvectors of the differential operator � : V(0, l) �→ L2(0, l) defined
by

{
(�ϕ)(x) := −(k(x)ϕ′(x))′ = λϕ(x), x ∈ (0, l);
ϕ(0) = 0, ϕ′(l) = 0,

(3.1.34)

corresponding to eigenvalues {λn}∞n=1, and

κn =
∫ T

0
exp(−λn(T − t)G(t)dt, n = 1, 2, 3, . . . . (3.1.35)

Proof Evidently, the differential operator � : V(0, l) �→ L2(0, l) defined by (3.1.34)
is self-adjoint and positive defined. Hence there exists an infinite number of positive
eigenvalues {λn}∞n=1, 0 < λ1 < λ2 < λ3 . . ., repeated according to their (finite)
multiplicity that λn → ∞, as n → ∞.

We assume, without loss of generality, that the eigenvectors {ϕn}∞n=1, correspond-
ing to the eigenvalues λn , are normalized (dividing the both sides of (3.1.34) by
‖ϕn‖L2(0,l)). Then, these eigenvectors {ϕn}∞n=1 form an orthonormal basis in L2(0, l)
for the operator �, defined by (3.1.34). Indeed, the identities−(k(x)ϕ′

n(x))
′ = λϕn(x)

and −(k(x)ϕ′
m(x))′ = λϕm(x) imply:

(λn − λm)ϕn(x)ϕm(x) = d

dx

[
k(x)ϕ′

n(x)ϕm(x) − k(x)ϕn(x)ϕ
′
m(x)

]
.

Integrate this identity on [0, l] and use the boundary conditions (3.1.34):

(λn − λm)ϕn(x)ϕm(x) = 0, ∀n,m = 1, 2, 3, . . . .

http://dx.doi.org/10.1007/978-3-319-62797-7_2
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Therefore, for λn �= λm ,

(ϕn(x), ϕm(x))L2(0,l) :=
∫ l

0
ϕn(x)ϕm(x)dx = 0, n �= m,

which means that (ϕn, ϕm)L2(0,l) = δnm , n,m = 1, 2, 3, . . . . Here and below δnm is
the Kronecker delta.

With this orthonormal basis we use the Fourier series expansion

u(x, t) =
∞∑

n=1

un(t)ϕn(x) (3.1.36)

of the solution of the initial boundary value problem given by the first three equations
of (3.1.31). Here

un(t) = Fn

∫ t

0
exp(−λn(t − τ))G(τ )dτ, t ∈ (0, T ] (3.1.37)

is the solution of the Cauchy problem

{
u′
n(t) + λnun(t) = FnG(t), t ∈ (0, T ],

un(0) = 0,

for each n = 1, 2, 3, . . . and Fn := (F, ϕn)L2(0,l) is the Fourier coefficient of the
function F ∈ L2(0, l).

Now we can use (3.1.36) and (3.1.37) to obtain the Fourier series expansion ofthe
input-output operator �, defined as (�F)(x) := u(x, T ; F):

(�F)(x) =
∞∑

n=1

κn Fnϕn(x), (3.1.38)

where κn is defined by (3.1.35).
Remark that, {ϕn}∞n=1 areeigenvectors of the input-output operator�, correspond-

ing to eigenvalues {κn}∞n=1. To show this, we replace F(x) by ϕm(x) in (3.1.38). Then
we get (3.1.33):

(�ϕm)(x) =
∞∑

n=1

κn(ϕm, ϕn)L2(0,l)ϕn(x) = κmϕm(x). (3.1.39)

Furthermore, � : L2(0, l) �→ L2(0, l) is a self-adjoint operator, that is,

(�F, F̃)L2(0,l) = (F,�F̃)L2(0,l), ∀F, F̃ ∈ L2(0, l).
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Indeed,

(�F, F̃)L2(0,l) :=
( ∞∑

n=1

κn Fnϕn(x),
∞∑

m=1

F̃mϕm(x)

)

L2(0,l)

=
∞∑

n=1

κn Fn F̃n = (F,�F̃)L2(0,l),

where F̃n := (F̃, ϕn)L2(0,l) is the Fourier coefficient of the function F̃ ∈ L2(0, l).
Hence, � = �∗, where �∗ : L2(0, l) �→ L2(0, l) is the adjoint operator. �

Thus, the input-output operator � : L2(0, l) �→ L2(0, l) is a self-adjoint operator
with eigenvectors {ϕn}∞n=1, corresponding to different eigenvalues {κn}∞n=1. It follows
from (3.1.39) that ‖�‖L2(0,l) = κ1. Hence,

‖�‖L2(0,l) = κ1 > κ2 > κ3 > . . . . (3.1.40)

Further, formula (3.1.38) implies that

(�∗�F)(x) =
∞∑

n=1

κ2
n Fnϕn(x). (3.1.41)

By Definition 2.4.1 in Sect. 2.4, the square root of eigenvalues κ2
n of the self-adjoint

operator �∗� is defined as the singular values of the input-output operator �, that
is, σn := κn > 0, n = 1, 2, 3, . . . . Hence, the singular system{σn, un, vn} for
the self-adjoint operator input-output operator � is {κn, ϕn, ϕn}, according to the
definition in Sect. 2.4. Indeed, un = ϕn and vn := �un/‖�un‖ = �ϕn/‖�ϕn‖. But
�ϕn = κnϕn , by (3.1.33), and ‖�ϕn‖ = κn . This implies that vn = κnϕn/|κn|. Since
κn > 0, we have vn = ϕn .

Therefore, if conditions (3.1.30) hold, then κn > 0, for all n = 1, 2, 3, . . . , as
formula (3.1.35) shows. In this case, the singular system {κn, ϕn, ϕn} for the self-
adjoint operator input-output operator � is uniquely determined by the eigensystem
{κn, ϕn} of the differential operator (3.1.34).

The following theorem gives a series representation of the unique solution of the
regularized form (3.1.16) of the normal equation.

Theorem 3.1.3 Let conditions (3.1.3) hold. Assume that uT ∈ L2(0, l) is a noise free
measured output data defined in (3.1.31). Then for the uniqueminimum Fα ∈ L2(0, l)
of the regularized functional (3.1.14) the following singular value expansion holds:

Fα(x) =
∞∑

n=1

q(α; κn)

κn
uT,nϕn(x), x ∈ (0, l), (3.1.42)
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where

q(α; κ) = κ2

κ2 + α
(3.1.43)

is the filter function, α > 0 is the parameter of regularization, κn, n = 1, 2, 3, . . .,
defined by formula (3.1.35) are the eigenvalues of the input-output operator �,
uT,n := (uT , ϕn) is the nth Fourier coefficient of uT (x) and ϕn(x) are the normalized
eigenfunctions corresponding to the eigenvalues λn of the operator � : V(0, l) �→
L2(0, l) defined by (3.1.34).

Proof Let u(x, t; F) be the weak solution of the direct problem defined by the first
three equations of (3.1.31), for a given admissible F ∈ L2(0, l). Then for the output
u(x, T ; F) the expansion (3.1.38) holds:

u(x, T ; F) =
∞∑

n=1

κn Fnϕn(x), (3.1.44)

We use this with the nth Fourier coefficients uT,n := (uT , ϕ)L2(0,l) of the noise free
measured output datum uT ∈ L2(0, l) in (3.1.14) and (3.1.15). Then we have:

Jα(F) = 1

2

∞∑

n=1

[
(κn Fn − uT,n)

2 + αF2
n

]
,

Transforming the nth term under the sum we get:

Jα(F) = 1

2

∞∑

n=1

[

(κ2
n + α)

(

Fn − κn

κ2
n + α

uT,n

)2

+ α

κ2
n + α

u2T,n

]

,

The regularized functional achieves minimum value if

Fn − κn

κ2
n + α

uT,n = 0,

as the right hand side shows. This defines the nth Fourier coefficient of the unique
minimum Fα ∈ L2(0, l) of the regularized functional (3.1.14):

Fα,n = κn

κ2
n + α

uT,n .
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Substituting this into the Fourier series expansion

Fα(x) =
∞∑

n=1

Fα,nϕn(x) (3.1.45)

of the function Fα ∈ L2(0, l) we arrive at the required expansion (3.1.42). �

The representation formula

Fα(x) = − 1

α

∫ T

0
ψ(x, t; Fα)G(t)dt, a.e. x ∈ (0, l), α > 0, (3.1.46)

which follows from (3.1.28) for the solution of the inverse problem (3.1.31) (the case
G(x, t) ≡ G(t)), shows the dependence of the solution Fα ∈ L2(0, l) of this inverse
problem on the solution of the adjoint problem (3.1.19). The same dependence can be
observed in the gradient formulae (3.1.18) and (3.1.29). Hence it is useful to illustrate
a relationship between the singular value expansion (3.1.45) and the representation
formula (3.1.46). Specifically, the following example shows their equivalence [40].

Example 3.1.1 The relationship between the singular value expansion (3.1.42) and
the representation formula (3.1.46)

We assume here that k(x) ≡ k = const > 0. Then the above defined eigenvalues λn

and normalized eigenfunctions ϕn(x) of the operator (�ϕ)(x) := −kϕ′′(x), defined
by (3.1.34), are

λn = [(n − 1/2)π/ l]2, ϕn(x) = √
2/ l sin(

√
λnx), n = 1, 2, 3, . . . . (3.1.47)

Replacing in formula (3.1.35) λn with kλn , we get:

κn =
∫ T

0
exp(−kλn(T − t)G(t)dt, n = 1, 2, 3, . . . . (3.1.48)

Let us apply the Fourier method to the adjoint problem (3.1.19) using the above
defined normalized eigenfunctions ϕn(x) corresponding to the eigenvalues λn . We
have:

ψ(x, t; F) =
∞∑

n=1

ψn(t; F)ϕn(x), (3.1.49)

where the ψn(t) is the solution of the backward Cauchy problem

{
ψ ′

n(t) = λnψn(t), t ∈ [0, T ),

ψn(T ) = un(T ; Fn) − uT,n.
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The solution of this problem is

ψn(t; Fn) = [
un(T ; Fn) − uT,n

]
exp(−kλn(T − t)), n = 1, 2, 3, . . . . (3.1.50)

Now we use the Fourier series expansions (3.1.45) and (3.1.49) in the represen-
tation formula (3.1.46) to obtain the formula

Fα,n = − 1

α

∫ T

0
ψn(t; Fα,n)G(t)dt, a.e. x ∈ (0, l), α > 0, (3.1.51)

for the nth Fourier coefficient of the unique minimum Fα ∈ L2(0, l) of the regu-
larized functional (3.1.14). On the other hand, assuming F(x) = Fα(x) in (3.1.50),
multiplying it both sides by −G(t)/α �= 0, integrating on [0, T ] and then using
formula (3.1.35) for κn , we obtain:

− 1

α

∫ T

0
ψn(t; Fα,n)G(t)dt = −κn

α
[un(T ; Fα) − uT,n].

Comparing this formula with (3.1.51) we deduce:

Fα,n = −κn

α
[un(T ; Fα,n) − uT,n]. (3.1.52)

Further, it follows from the expansions (3.1.36) and (3.1.44) that between the nth
Fourier coefficient Fα,n of the unique minimum Fα ∈ L2(0, l) and nth Fourier coef-
ficient un(T ; Fα) of the output data u(x, T ; Fα) the following relationship holds:

un(T ; Fα) = κn Fα,n. (3.1.53)

Using this formula in (3.1.52) we conclude:

un(T ; Fα,n)

κn
= −κn

α
[un(T ; Fα,n) − uT,n],

which yields:

un(T ; Fα) = q(α, κn)uT,n, n = 0, 1, 2, 3, . . . . (3.1.54)

This is a relationship between the Fourier coefficients un(T ; Fα) and uT,n of the
output data u(x, T ; Fα) and the measured output data uT (x), via the filter function
q(α, κ), defined by formula (3.1.43).

Formulae (3.1.53) and (3.1.54) permit to derive the nth Fourier coefficient Fα,n

of the unique minimum Fα ∈ L2(0, l) of the regularized functional (3.1.14) and nth
Fourier coefficient uT,n of the measured output data uT (x) via the filter function
q(α, κ):
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Fα,n = q(α, κn)

κn
uT,n, n = 0, 1, 2, 3, . . . . (3.1.55)

The singular value expansion (3.1.42) for the unique minimum Fα ∈ L2(0, l)
follows from the expansion (3.1.45) and formula (3.1.55). �

3.1.3 Picard Criterion and Regularity of Input/Output Data

We deduce here several important corollaries from Theorem3.1.3.
Let us first assume that α = 0. Then, by formula (3.1.43), q(α, σ ) = 1, and

expansion (3.1.42) becomes:

F(x) =
∞∑

n=1

1

κn
uT,n ϕn(x), x ∈ (0, l), (3.1.56)

This expansion exactly coincides with the singular value expansion (2.4.13) given in
Picard’s Theorem2.4.1 in Sect. 2.4. Since F0 = �†uT is the solution of the normal
equation (3.1.16)withα = 0 and�† : L2(0, l) �→ L2(0, l) isMoore-Penrose inverse
of the input-output operator, we conclude that (3.1.56) is a singular value expansion
of the solution of the normal equation, when α = 0.

The Picard criterion given in Theorem2.4.1 of Sect. 2.4 and applied to the
inverse problem (3.1.31) implies that the series (3.1.56) converges if and only if
uT ∈ N (�∗)⊥ and the following condition holds:

∞∑

n=1

u2T,n

κ2
n

< ∞. (3.1.57)

Remember that {ϕn(x)} forms a complete orthonormal system in L2(0, l) and
therefore for the self-adjoint input-output operator � : L2(0, l) �→ L2(0, l) we
deduce thatN (�) = N (�∗) = {0}. On the other hand,D(�†) := R(�) ⊕R(�)⊥,
by the definition of the Moore-Penrose inverse. Since N (�∗) = R(�)⊥, by
Theorem2.2.1, this implies that D(�†) = R(�) and D(�†) is dense in L2(0, l).

The fulfilment of the Picard criterion (3.1.57) depends on two factors: κn and uT,n .
As formula (3.1.35) shows, an asymptotic behavior of the first factor κn depends on
a class where the input G(t) is defined. The second factor is the Fourier coefficient
uT,n := (uT , ϕn)L2(0,l) of the measured output data uT (x). As a consequence, the
convergence of the series (3.1.56) depends on the input data G(t) and the measured
output data uT (x). Based on this observation, we will analyze here the relationship
between the convergence of the series (3.1.56) and the smoothness/regularity of the
input G ∈ L2(0, T ) and the measured output uT ∈ L2(0, l) data.

http://dx.doi.org/10.1007/978-3-319-62797-7_2
http://dx.doi.org/10.1007/978-3-319-62797-7_2
http://dx.doi.org/10.1007/978-3-319-62797-7_2
http://dx.doi.org/10.1007/978-3-319-62797-7_2
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The begin the following result which shows a necessary condition for solvability
of the inverse problem (3.1.31) with the noise free measured output data uT ∈
N (�∗)⊥ ≡ R(�).

Corollary 3.1.3 Let conditions (3.1.3) hold. Assume that uT ∈ L2(0, l) is a noise
freemeasured output defined in (3.1.31). If the time dependent function G ∈ L2(0, T )

satisfies conditions (3.1.30), then

∞∑

n=1

n2u2T,n < ∞, uT,n := (uT , ϕn)L2(0,l). (3.1.58)

is the necessary condition for solvability of the inverse problem (3.1.31).

Proof Using formula (3.1.35) for κn , we can estimate the singular values σn := |κn|
as follows:

0 < κn =
∣
∣
∣
∣

∫ T

0
exp(−λn(T − t))G(t)dt

∣
∣
∣
∣

≤
(∫ T

0
exp(−2λn(T − t))dt

)1/2

‖G‖L2[0,T ] =
1√
2λn

[1 − exp(−2λnT ]1/2 ‖G‖L2[0,l]. (3.1.59)

It is known that the eigenvalues λn of the differential operator � : V(0, l) �→
L2(0, l), defined in (3.1.34), are of order λn = O(n2). Then we conclude from the
above estimate that, κn = O(1/n). Using this property in the Picard criterion (3.1.57)
we arrive at the condition (3.1.58). �

To find out what means the necessary condition (3.1.58) in terms of the measured
output uT ∈ L2(0, l), we need some auxiliary results from Fourier series theory.
It is known that if {ϕn(x)}∞n=1 is an orthonormal basis of L2(0, l) then the Fourier
series of f ∈ L2(0, l) with respect to this basis converges in L2-norm if and only if
Parseval’s identity

‖ f ‖2L2(0,l) =
∞∑

n=1

f 2n , (3.1.60)

holds.Here and below, fn := ( f, ϕn)L2(0,l) is thenth Fourier coefficient of the element
f ∈ L2(0, l). Let now assume that {ϕn(x)}∞n=1 ⊂ L2(0, l) is the orthonormal basis
defined by the eigenfunctions of the Sturm-Liouville problem (3.1.34). Then the
theorem below shows that in this case Parseval’s identity holds.
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Theorem 3.1.4 Let {ϕn(x)}∞n=1 ⊂ L2(0, l) be the orthonormal basis defined by
the eigenfunctions of the Sturm-Liouville problem (3.1.34). Then Parseval’s identity
(3.1.60) holds for f ∈ L2(0, l) with respect the basis {ϕn(x)} and the Fourier series

f (x) =
∞∑

n=1

fnϕn(x) (3.1.61)

of an element f ∈ L2(0, l) with respect to this basis converges in L2-norm.

Proof of this theorem can be found in [30].
Now, replacing in this theorem f ∈ L2(0, l) by uT ∈ L2(0, l) and reformulating

the above assertion in terms of the measured output data we conclude that if uT ∈
L2(0, l), then Parseval’s identity holds:

‖uT ‖2L2(0,l) =
∞∑

n=1

u2T,n, (3.1.62)

More precisely, having only the condition uT ∈ L2(0, l) we can not guarantee the
fulfilment of the Picard criterion (3.1.58). In other words, the more smoothness of uT

is required in order to fulfil the Picard criterion. To find out such a class of functions
for which the Picard criterion (3.1.58) holds, we need the following auxiliary result.

Lemma 3.1.5 Let conditions (3.1.3) hold. Assume that {ϕn(x)}∞n=1 ⊂ L2(0, l) is the
orthonormal basis defined by the eigenfunctions corresponding to the eigenvalues
{λn}∞n=1 of the Sturm-Liouville problem (3.1.34). Then the following assertions hold
true:
(i) The system {ϕn(x)/

√
λn}∞n=1 forms an orthonormal basis of V(0, l) := {v ∈

H 1(0, l) : v(0) = 0} with the inner product

(�w, v)L2(0,l) :=
∫ l

0
k(x)w′(x)v′(x)dx . (3.1.63)

(ii) If v ∈ V(0, l), then the Fourier series

v(x) =
∞∑

n=1

vnϕn(x), (3.1.64)

with the Fourier coefficients vn = (v, ϕn)L2(0,l), converges in the norm of the space
V(0, l) ⊂ H 1(0, l).

Proof Multiplying the both sides of �ϕn(x) = λnϕn(x) by ϕm(x) we conclude:

{
(�ϕn, ϕn)L2(0,l) = λn‖ϕn‖2L2(0,l) = λn, m = n,

(�ϕn, ϕm)L2(0,l) = λn(ϕn, ϕm)L2(0,l) = 0, m �= m.
(3.1.65)
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Hence

(�ϕn/
√

λn, ϕm/
√

λm)L2(0,l) =
{
1, m = n,

0, m �= m.

This implies that {ϕn(x)/
√

λn}∞n=1 forms an orthonormal subset of V(0, l). To prove
that this subset is an orthonormal basis of V(0, l), it is sufficient to show that
(�ϕn, v)L2(0,l) = 0 implies v ≡ 0, for any v ∈ V(0, l). Indeed,

(�ϕn, v)L2(0,l) = λn(ϕn, v)L2(0,l) = 0.

Since {ϕn(x)}∞n=1 forms an orthonormal basis of L2(0, l), so, λm(ϕn, u)L2(0,l) = 0
implies v ≡ 0. Therefore, {ϕn(x)/

√
λn}∞n=1 forms an orthonormal basis of V(0, l)

with the inner product (3.1.63).
To prove the second assertion (i i), first we remark that the norms ‖v‖V(0,l) and

‖v′‖L2(0,l) are equivalent, due to the Dirichlet boundary condition ϕn(0) = 0 in
(3.1.34). Furthermore, conditions 0 < k0 ≤ k(x) ≤ k1 < ∞ imply an equivalence
of the energy norm ‖v‖� := (�v, v)

1/2
L2(0,l), defined by the inner product (3.1.63), and

the norm ‖v′‖L2(0,l).
Consider now the series

v(x) =
∞∑

n=1

μn
ϕn(x)√

λn
, (3.1.66)

with the Fourier coefficients μn = (�v, ϕn(x)/
√

λn)L2(0,l) (with respect to the basis
{ϕn(x)/

√
λn}). Since the system {ϕn(x)/

√
λn}∞n=1 forms an orthonormal basis of

V(0, l), the series (3.1.66) converges in the norm of V(0, l). Comparing the series
(3.1.64) and (3.1.66) we deduce that μn = √

λnvn . This implies that the series
(3.1.64) also converges in the norm of V(0, l). �

Corollary 3.1.4 Let conditions of Corollary3.1.3 hold. Assume that the output
uT (x) satisfies the consistency conditions (3.1.32). Then the necessary condition
(3.1.58) for solvability of the inverse problem (3.1.31) is equivalent to the condition
uT ∈ V(0, l).

Proof It follows from (3.1.65) and (3.1.66), applied to the measured output data
uT ∈ V(0, l), that

‖uT ‖2� := (�uT , uT )L2(0,l) =
∞∑

n=1

λnu
2
T,n, uT,n := (uT , ϕn)L2(0,l). (3.1.67)

Since the norms ‖uT ‖� := (
(�uT , uT )L2(0,l)

)1/2
and ‖uT ‖V(0,l) are equivalent and

λn = O(n2), the series (3.1.67) convergences if and only if condition (3.1.58)
holds. �
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It is important to note that the Picard criterion (3.1.57) implicitly includes also
the requirement

κn �= 0, for all n = 1, 2, 3 . . . . (3.1.68)

This condition coincides with unique solvability of the inverse problem (3.1.31).
Indeed, it follows from the Fourier series expansion (3.1.38) of the input-output
operator � that if κm = 0 for some m, then the mth Fourier coefficient Fm :=
(F, ϕm)L2(0,l) of the unknown function F ∈ L2(0, l) can not be determined uniquely.
More precisely, the solution F ∈ L2(0, l) of the inverse problem (3.1.31) can only
be determined up to the additive termCmϕm(x), whereCm is an arbitrary constant. In
this context, (3.1.30) are the sufficient conditions ensuring the fulfilment of condition
(3.1.68).

Remark also that if κn = 0, for some n, then the input-output operator � is
not bijective, as the Fourier series expansion (3.1.38) shows. Hence in this case the
bijectivity condition of Theorem2.5.1 in Sect. 2.5 is not satisfied.

The following result shows that the conditions 0 < G0 ≤ G(t) ≤ G1 < ∞, for
all t ∈ [0, T ] can be considered as the sufficient condition ensuring the fulfilment of
the requirement (3.1.68).

Corollary 3.1.5 Let conditions (3.1.3) hold. Assume that uT ∈ L2(0, l) is a noise
freemeasured output defined in (3.1.31). If the time dependent function G ∈ L2(0, T )

satisfies the conditions

0 < G0 ≤ G(t) ≤ G1 < ∞, t ∈ [0, T ], (3.1.69)

then the inverse problem (3.1.31) is uniquely solvable if and only if

∞∑

n=1

n4u2T,n < ∞. (3.1.70)

Proof By using conditions (3.1.69), we can easily derive the estimate

0 <
G0

λn
[1 − exp(−λnT ] ≤ κn ≤ G1

λn
[1 − exp(−λnT ], n = 1, 2, 3 . . . . (3.1.71)

It follows from estimate (3.1.71) that 0 < κn = O(1/n2), due to λn = O(n2). Then
the Picard criterion (3.1.57) becomes to the condition (3.1.70). �

Corollary 3.1.6 The unique solvability (3.1.70) is equivalent to the conditions uT ∈
H 2(0, l) and uT (0) = u′

T (l) = 0.

We leave the proof of this corollary as an exercise for the reader. �

http://dx.doi.org/10.1007/978-3-319-62797-7_2
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Summarizing the results given in Corollaries3.1.3, 3.1.4, 3.1.5 and 3.1.6 we con-
clude that an increase of smoothness of an input G(t) forces an increase of smooth-
ness of an output uT . Specifically, there exists a direct relationship between the
smoothness of an input and output, for unique solvability of an inverse problem:
smooth input requires an appropriate smooth output.

3.1.4 The Regularization Strategy by SVD. Truncated SVD

Let us assume now that α �= 0. Then, by Definition2.5.1 in Sect. 2.5, the operator

Rα := (
�∗� + α I

)−1
�∗ : L2(0, l) �→ L2(0, l), α > 0, (3.1.72)

is the regularization strategy. According to (3.1.42), the following singular value
expansion holds:

(RαuT )(x) =
∞∑

n=1

q(α; κn)

κn
uT,nϕn(x), α ≥ 0, (3.1.73)

where uT ∈ L2(0, l) is the noise free measured output.
Comparing the damping parameters 1/κn and q(α; κ)/κ in the singular value

expansions (3.1.56) and (3.1.73), we find that Tikhonov regularization is reflected in
the expansion (3.1.73) of the regularized solution Fα(x) as the factor q(α; κ). For
this reason, the function q(α; κ), 0 < q(α; κ) ≤ 1, α > 0, given by (3.1.43) is also
called a regularizing filter, corresponding to Tikhonov regularization. Remark that
in Sect. 2.5 the factor q(α; σ) was defined as the filter function.

As noted above, the measured output uT ∈ L2(0, l) in the inverse source problem
(3.1.31) is never known as an exact datum. Instead the noisy data uδ

T ∈ L2(0, l) with
a given noise level δ > 0 is usually available:

‖uδ
T − uT ‖L2(0,l) ≤ δ, δ > 0. (3.1.74)

In this case the inverse source problem (3.1.31) with the noisy output can be refor-
mulated as the following operator equation:

�F δ = uδ
T , uδ

T ∈ L2(0, l). (3.1.75)

Applying Theorem3.1.3 to this inverse problem and using the expansion (3.1.73),
we can define formally the regularization strategy as follows:

(Rα(δ)uδ
T )(x) = ∑∞

n=1
q(α(δ);κn)

κn
uδ
T,nϕn(x),

q(α(δ); κ) = κ2

κ2+α(δ)
,

(3.1.76)

http://dx.doi.org/10.1007/978-3-319-62797-7_2
http://dx.doi.org/10.1007/978-3-319-62797-7_2
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where uδ
T,n := (uδ

T , ϕn)L2(0,l) is the nth Fourier coefficient of the noisy output. The
left hand side defines the regularized solution F δ

α (x) := (Rα(δ)uδ
T )(x) of the inverse

problem, i.e. the unique solution of the regularized form of the normal equation with
noisy output uδ

T ∈ L2(0, l):

(�∗� + α(δ)I )F δ
α(δ) = �∗uδ

T . (3.1.77)

The following theorem shows that if the parameter of regularization α(δ) > 0,
depending on the noise level δ > 0, is chosen properly, then the regularizing filter
q(α; κ), given in (3.1.76), generates a convergent regularization strategy for the of
inverse source problem (3.1.31).

Theorem 3.1.5 Let conditions (3.1.3) hold. Assume that the time dependent source
G(t) in (3.1.31) satisfies (3.1.69). Suppose that uδ

T ∈ L2(0, l) is the noisy data given
by (3.1.74). If the parameter of regularization is chosen so that

α(δ) → 0 and
δ2

α(δ)
→ 0, as δ → 0, (3.1.78)

then the regularized solution F δ
α (x) := (Rα(δ)uδ

T )(x) given by (3.1.76) converges
in L2-norm to the unique solution F = �†uT given by (3.1.56), of the operator
equation (3.1.12), as δ → 0, that is,

‖Rα(δ)u
δ
T − F‖L2(0,l) → 0, as δ → 0. (3.1.79)

Proof Let us estimate the above norm using the singular value expansions (3.1.56)
and (3.1.76). We have:

‖Rα(δ)u
δ
T − F‖2L2(0,l) =

∞∑

n=1

∣
∣
∣
∣

(

uδ
T,n

q(κn, α(δ))

κn
− uT,n

1

κn

)∣
∣
∣
∣

2

=
∞∑

n=1

∣
∣
∣
∣(u

δ
T,n − uT,n)

q(κn, α(δ))

κn
+ uT,n

(
q(κn, α(δ))

κn
− 1

κn

)∣
∣
∣
∣

2

≤ 2
∞∑

n=1

(uδ
T,n − uT,n)

2 q2(κn, α(δ))

κ2
n

+ 2
∞∑

n=1

u2T,n

α(δ)2

(κ2
n + α(δ))2κ2

n

. (3.1.80)

By the property (q(κ, α)/κ)2 ≤ 1/(4α) of the filter function, given by estimate
(2.5.14) in Sect. 2.5, the first summand on the right hand side of (3.1.80) can be
estimated as follows:

http://dx.doi.org/10.1007/978-3-319-62797-7_2
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2
∞∑

n=1

(uδ
T,n − uT,n)

2

(
q(κn, α(δ))

κn

)2

≤ 1

2α(δ)

∞∑

n=1

(uδ
T,n − uT,n)

2 = δ2

2α(δ)
. (3.1.81)

The right hand side tends to zero, by condition (3.1.78) of the theorem.
To estimate the second right hand summand in (3.1.80), we rewrite it in the

following form

2
∞∑

n=1

u2T,n

α(δ)2

(κ2
n + α(δ))2κ2

n

=
N∑

n=1

2α(δ)2

(κ2
n + α(δ))2

u2T,n

κ2
n

+
∞∑

n=N+1

2α(δ)2

(κ2
n + α(δ))2

u2T,n

κ2
n

, (3.1.82)

and estimate each right hand side terms separately.
It follows from estimate (3.1.71) that κn = O(1/n2). This implies that no matter

how small the pa rameter of regularization α(δ) > 0 was selected, there exists such
a natural number N = N (δ) that

min
1≤n≤N

κ2
n = κ2

N ≥ √
α(δ) > κ2

N+1. (3.1.83)

Then N (δ) = O(α(δ)−1/8) → ∞, as δ → 0. This and (3.1.83) allow to estimate the
partial sum on right hand side of (3.1.82) as follows:

N∑

n=1

2α(δ)2

(κ2
n + α(δ))2

u2T,n

κ2
n

≤ 2α(δ)

(1 + √
α(δ) )2

N (δ)∑

n=1

u2T,n

κ2
n

. (3.1.84)

By the solvability condition (3.1.57), the sum is finite and the right hand side tends
to zero, as δ → 0, by the first condition of (3.1.78).

The last right hand side term in (3.1.82) can easily be estimated by using the
inequality α2/(κ2

n + α)2 < 1, for all n > N (δ) + 1:

∞∑

n=N (δ)+1

2α(δ)2

(κ2
n + α(δ))2

u2T,n

κ2
n

≤ 2
∞∑

n=N (δ)+1

u2T,n

κ2
n

.

Again, by the solvability condition (3.1.57), the right hand side tends to zero, as
δ → 0. This, with (3.1.80), (3.1.81), (3.1.82) and (3.1.84) implies
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‖Rα(δ)u
δ
T − F‖L2(0,l) ≤

δ2

2α(δ)
+ 2α(δ)

(1 + √
α(δ) )2

N (δ)∑

n=1

u2T,n

κ2
n

+ 2
∞∑

n=N (δ)+1

u2T,n

κ2
n

. (3.1.85)

This estimate yields (3.1.79), since all the right hand side terms tend to zero, as
δ → 0, by conditions (3.1.78). This completes the proof of the theorem. �

As it was introduced in Sect. 2.4, the Singular Value Decomposition (SVD) can
also be used to obtain an approximation

FN (x) =
N∑

n=1

1

κn
uT,n ϕn(x), x ∈ (0, l), (3.1.86)

of the solution (3.1.56) of the normal equation (3.1.16) without regularization (α =
0). The proof scheme of Theorem3.1.5 shows that the in the case when α > 0
SVD can also be used to obtain a regularization strategy in finite dimensional space
L2
N (0, l) ⊂ L2(0, l). This strategy is called Truncated Singular ValueDecomposition

(TSVD), with Tikhonov regularization. Indeed, let the cutoff parameter N = N (δ)

be defined as in the proof of the theorem, by (3.1.83): N (δ) = O(α(δ)−1/8). We
define the N th partial sum

⎧
⎨

⎩

(
RN (δ)

α(δ) u
δ
T

)
(x) := ∑N (δ)

n=1
q(α;κn)

κn
uδ
T,nϕn(x), q(α; κ) = κ2

κ2+α
,

α ≥ 0, κn = ∫ T
0 exp(λn(T − t)G(t)dt, n = 1, 2, 3, . . .

(3.1.87)

of the series (3.1.76) as an approximation of the regularization strategy. We first
estimate the approximation error ‖RN (δ)

α(δ) u
δ
T − F‖:

‖RN (δ)

α(δ) u
δ
T − F‖2L2(0,l) ≤ 2

∥
∥
∥RN (δ)

α(δ) u
δ
T − FN

∥
∥
∥
2

L2(0,l)
+ 2

∥
∥FN − F

∥
∥2

L2(0,l) .

Following (3.1.80) we get:

‖RN (δ)

α(δ) u
δ
T − F‖2L2(0,l) ≤ 4

N (δ)∑

n=1

(uδ
T,n − uT,n)

2 q2(κn, α(δ))

κ2
n

+ 4
N (δ)∑

n=1

u2T,n

α(δ)2

(κ2
n + α(δ))2κ2

n

+ 2
∞∑

N (δ)+1

u2T,n

κ2
n

For estimating the first and the second right hand side normswe use estimates (3.1.81)
and (3.1.84). Then deduce the following error estimate for this approximation:

http://dx.doi.org/10.1007/978-3-319-62797-7_2
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‖RN (δ)

α(δ) u
δ
T − F‖2L2(0,l) ≤

δ2

α(δ)
+ 4α(δ)

(1 + √
α(δ) )2

N (δ)∑

n=1

u2T,n

κ2
n

+ 2
∞∑

N (δ)+1

u2T,n

κ2
n

. (3.1.88)

Remark that the approximation error estimate (3.1.88) is almost the same as
estimate (3.1.85) in Theorem3.1.5.

In the numerical implementations it is convenient to use the special case α(δ) ∼ δ.
Evidently, in this case conditions (3.1.78) of Theorem3.1.5 hold.

In the numerical example below we demonstrate the role of the above theoretical
results in the TSVD algorithm with Tikhonov regularization applied to the problem
of determining the unknown space-wise dependent source F ∈ L2(0, l) in (3.1.31).
In the numerical analysis we will consider the simplest version of the heat equation,
assuming that k(x) = 1, that is, only Simpson’s rule in the numerical integration is
responsible for increase of an error.

Example 3.1.2 Implementation of TSVD: identification of an unknown space-wise
dependent source in (3.1.31)

The function u(x, t) = sin(πx/2)
(
1 − exp(−π2t/2)

)
(x, t) ∈ [0, 1] × [0, 1] is the

exact solution of the heat equation ut = uxx + F(x)G(t) with the source functions
F(x) = sin(πx/2), G(t) = (π2/4)

[
1 + exp(−π2t/2)

]
, and with homogeneous

boundary and initial conditions: u(0, t) = ux (1, t) = 0, u(x, 0) = 0. The synthetic
noise free output is

uT (x) = (
1 − exp(−π2/2)

)
sin(πx/2), x ∈ [0, 1]. (3.1.89)

The random noisy output data uδ
T (x), ‖uT − uδ

T ‖L2(0,l) ≤ δ, δ > 0, is generated
from (3.1.89) using the MATLAB random number generator function “rand (·)”.
The TSVD regularization strategy defined by (3.1.87) is used in determination of the
approximate solution F δ,N

α := RN (δ)

α(δ) u
δ
T from the noisy data uδ

T (x).
Note that the smoothness of the above functions G(t) and uT (x) are enough to

ensure the fulfilment of the unique solvability condition (3.1.70) in Corollary3.1.5.
For synthetic noise free output data (3.1.89) (δ = 0) the TSVD formula (3.1.86)

is used to obtain the approximate solution FN . The accuracy error E(n; F δ,n
α ; δ) :=

‖F − F δ,n
α ‖L2(0,l) obtained for the values N = 3 ÷ 4 of the cutoff parameter is

1.7 × 10−6. For noisy output data this error increase drastically, when N > 3, even
for the small value δ = 0.01 of the noise level.

For the synthetic noisy output data uδ
T (x), with δ = 0.01 and δ = 0.6, the TSVD

regularization strategy (3.1.87) is used to obtain the approximate solution F δ,N
α . The

dependence of the accuracy error E(n; F δ,n
α ; δ) on the parameter of regularization α

and the cutoff parameter N are given in Tables3.1 and 3.2. Bold-faced values of the
accuracy error correspond to the optimal values of the cutoff parameter and agree
with the estimate N (δ) = O(α(δ)−1/8). For the optimal value N = 3 the parameter
of regularization α should small to ensure the accuracy, but, at the same time, should
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Table 3.1 Dependence of the accuracy error on the parameter of regularization α and the cutoff
parameter N : δ = 0.01

N\α 0 0.1 0.01 0.001

3 2.5 × 10−2 1.2 × 10−1 1.4 × 10−2 1.5 × 10−2

5 1.5 × 10−1 1.2 × 10−1 1.5 × 10−2 3.1 × 10−2

10 3.9 × 10−1 1.2 × 10−1 1.5 × 10−2 3.2 × 10−2

Table 3.2 Dependence of the accuracy error on the parameter of regularization α and the cutoff
parameter N : δ = 0.6

N\α 0 0.1 0.01 0.001

3 1.5 × 100 1.4 × 10−1 2.7 × 10−1 2.8 × 10−1

10 2.4 × 101 1.4 × 10−1 3.4 × 10−1 1.9 × 10−1

20 7.9 × 101 1.5 × 10−1 3.4 × 10−1 2.0 × 10−1
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        ( N=5, α = 0 )
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       ( N=3, α = 10−2 )

Fig. 3.1 Influence of cutoff (left figure) and regularization (right figure) parameters on reconstruc-
tion accuracy: δ = 0.01

not be too small to ensure the stability. Both situations are is clearly illustrated in the
third and fifth columns of the tables.

Although it would seem from the above tables that the difference between the
errors for N = 3 and N = 5 are small, the deviation of the approximate solution
FN , corresponding to N = 5, from the exact solution is large enough, even at low-
level noise δ = 0.01, as the left Fig. 3.1 shows. The reconstructed from the noisy
output data uδ

T (x), with δ = 0.01, approximate solutions FN obtained for two values
α1 = 0.1 and α2 = 0.01 of the parameter of regularization are plotted in the right
Fig. 3.1. Better reconstruction obviously is obtained when α2 = 0.01, since in this
case both conditions of the Theorem3.1.5 aremet approximately:α � 1 and δ2/α �
1. By increasing the noise level, impact of the first condition increases. Figure3.2
illustrates the situation: for the higher noise level δ = 0.1, better reconstruction is
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Fig. 3.2 Influence of the
parameter of regularization
on accuracy of
reconstruction: δ = 0.1.
Table reflects the accuracy
error depending on cutoff
and regularization
parameters
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       ( N=3, α = 2×10−2 )

obtained when α2 = 0.02. Table here reflects the accuracy error depending on cutoff
and regularization parameters. �

3.2 Inverse Source Problems for Wave Equation

In this section we formulate the spacewise-dependent source identification problem
for 1D wave equation. Although the approach and methods given in the previous
section can be used for this class of inverse source problems also (see [39]), we will
demonstrate on a simple model that the final data inverse source problem for wave
equation has generic poor properties.

Consider the problem of determining the unknown spatial load F(x) in the hyper-
bolic problem

⎧
⎨

⎩

utt = (κ(x)ux )x + F(x)G(t), (x, t) ∈ �T := (0, l) × (0, T );
u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ (0, l);
u(0, t) = 0, u(l, t) = 0, t ∈ (0, T ),

(3.2.1)

from the final state overdetermination

uT (x) := u(x, T ), x ∈ (0, l). (3.2.2)

The one-dimensional Eq. (3.2.1) describes traveling-wave phenomena, and gov-
erns, for instance, the transverse displacements of an oscillating elastic string [99].
With Hooke’s law, u(x, t) is the displacement in the one-dimensional thin elastic
string, u(0, t) is a the deformation gradient, i.e. strain, at the left end x = 0 of a
string, κ > 0 is the elastic modulus. The functions F(x) and G(t) represent a spatial
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and temporal load distributions along the one-dimensional elastic string. u0(x) and
u1(x) are the initial strain and initial velocity, respectively.

We define the problem of determining the unknown spatial load F(x), i.e. prob-
lem (3.2.1) and (3.2.2), as an inverse source problem for wave equation with final
state overdetermination. Subsequently, for a given source F ∈ L2(0, l), the initial-
boundary value problem (3.2.1) will be defined as the direct problem.

In practice, instead of the final state overdetermination (3.2.2) the final velocity
overdetermination

νT (x) := ut (x, T ), x ∈ (0, l). (3.2.3)

can be given as ameasured output. In this case, (3.2.1) and (3.2.3) define the problem
of determining the unknown spatial load F(x), i.e. an inverse source problem for
wave equation with final velocity overdetermination.

Consider the direct problem (3.2.1). In common from the point of view of general
PDE theory, we will assume that

{
0 < κ∗ ≥ κ(x) ≥ κ ∗< +∞, κ ∈ C1[0, l];
u0 ∈ V(0, l), u1 ∈ L2(0, l), F ∈ L2(0, l), G ∈ L2(0, T ).

(3.2.4)

where V(0, l) := {v ∈ H 1(0, l) : v(0, t) = v(l, t) = 0}. It is known that (see
[24], Chap. 7.2) under the conditions the weak solution u ∈ L2(0, T ;V(0, l)), with
ut ∈ L2(0, T ; L2(0, l)), utt ∈ L2(0, T ; H−1(0, l)), of the initial-boundary value
problem (3.2.1) exists, unique and satisfies the following estimate:

max
t∈[0,T ]

(‖u‖V(0,l) + ‖ut‖L2(0,l)
) + ‖utt‖L2(0,T ;H−1(0,l)) ≤

C0
(‖F‖L2(0,l)‖G‖L2(0,T ) + ‖u0‖V(0,l) + ‖u1‖L2(0,l)

)
, (3.2.5)

where the constant C0 > 0 depends on l, T > 0 and the constants in (3.2.4).
In view of Theorem3.1.1 this weak solution belongs to L∞(0, T ;V(0, l)), with

ut ∈ L∞(0, T ; L2(0, l)), utt ∈ L2(0, T ; H−1(0, l)) (see also [24], Chap. 7.2, Theo-
rem 5).

The following preliminary result will be useful in the sequel.

Lemma 3.2.1 Let conditions (3.2.4) holds. Then the weak solution u ∈ L2(0, T ;
V(0, l)) of the initial-boundary value problem (3.2.1) satisfies the following energy
identity:

∫ l

0

[
u2t (x, t) + κ(x)u2x (x, t)

]
dx = 2

∫ l

0

∫ t

0
F(x)G(τ )uτ (x, τ )dτ

+
∫ l

0

[
(u1(x))

2 + κ(x)(u′
0(x))

2
]
dx (3.2.6)

for all t ∈ [0, T ].
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Proof Multiplying both sides of Eq. (3.2.1) by ut (x, t), integrating on [0, l] and
then applying the integration by parts formula to the integral containing the term
(κ(x)ux )x we get:

1

2

d

dt

∫ l

0

[
u2τ (x, t) + κ(x)u2x (x, t)

]
dx =

∫ l

0
F(x)G(t)ut (x, t)dx,

for all t ∈ [0, T ]. Integrating this identity on [0, t] and using the non-homogeneous
initial conditions we arrive at the required identity. �

Consider the problem (3.2.1) and (3.2.2) of determining the unknown spatial
load F(x) from final state overdetermination. Denote by u := u(x, t; F) the unique
weak solution of the direct problem (3.2.1), corresponding to a given source F ∈
L2(0, l). Introducing the input-output operator � : L2(0, l) �→ L2(0, l), defined as
(�F)(x) := u(x, T ; F), we can reformulate the inverse problem as the following
operator equation

�F = uT , F ∈ L2(0, l), uT ∈ L2(0, l). (3.2.7)

Lemma 3.2.2 Let conditions (3.2.4) holds. Assume that u0(x) = u1(x) = 0. Then
the input-output operator

� : F ∈ L2(0, l) �→ u(x, T ; F) ∈ L2(0, l),

corresponding to the source problem (3.2.1) and (3.2.2) is a linear compact operator.

The proof is almost exactly the same as that of Lemma3.1.1 and is left as an exercise
to the reader. �

Thus, the hyperbolic inverse source problem (3.2.1) and (3.2.2) is ill-posed. Hence
the approach given in Sect.3.3 can be used for aminimumof the regularizedTikhonov
functional

Jα(F) = 1

2

∫ l

0
[(�F)(x) − uT (x)]2dx + 1

2
α‖F‖L2(0,l), (3.2.8)

where α > 0 is the parameter of regularization.
Consider now the problem of determining the unknown spatial load F(x) from

final velocity overdetermination, i.e. the inverse problem defined by (3.2.1) and
(3.2.3). We define the input-output operator � : L2(0, l) �→ L2(0, l), (�F)(x) :=
ut (x, T ; F). In a similar way, we can prove that the problem

�F = νT , F ∈ L2(0, l), νT ∈ L2(0, l) (3.2.9)
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is also ill-posed. The regularizedTikhonov functional corresponding to the inverse
problem defined by (3.2.1) and (3.2.3) is the functional

Jα(F) = 1

2

∫ l

0
[(�F)(x) − νT (x)]2dx + 1

2
α‖F‖L2(0,l). (3.2.10)

3.2.1 Non-uniqueness of a Solution

Consider first the inverse problem (3.2.1) and (3.2.2) assuming that the initial strain
u0(x) and the initial velocityu1(x) are zero.Toprove an existence of uniqueminimum
of functional (3.2.8) we need to apply Theorem2.5.1 in Sect. 2.5. For this aim we
analyze some properties of the input-output operator � : L2(0, l) �→ L2(0, l) and
the operator equation (3.2.7), adopting Lemma3.1.4 to the considered case.

Lemma 3.2.3 Let conditions (3.2.4) hold. Then the input-output operator � :
L2(0, l) �→ L2(0, l), (�F)(x) := u(x, T ; F), corresponding to the inverse problem
(3.2.1) and (3.2.2), is self-adjoint. Furthermore,

(�ϕn)(x) = κnϕn(x), (3.2.11)

that is, {κn, ϕn} is the eigensystem of the input-output operator �,

κn = 1√
λn

∫ T

0
sin

(√
λn(T − t)

)
G(t)dt, n = 1, 2, 3, . . . (3.2.12)

and {ϕn}∞n=1 are orthonormal eigenvectors corresponding to eigenvalues {λn}∞n=1 of
the differential operator � : V(0, l) �→ L2(0, l), V(0, l) := {v ∈ H 1(0, l) : v(0) =
v(l) = 0}, defined by

{
(�ϕ)(x) := −(k(x)ϕ′(x))′ = λϕ(x), x ∈ (0, l);
ϕ(0) = 0, ϕ(l) = 0,

(3.2.13)

Proof Let {ϕn}∞n=1 be the orthonormal eigenvectors corresponding to the positive
eigenvalues {λn}∞n=1, 0 < λ1 < λ2 < λ3 . . . of the self-adjoint positive defined
differential operator � : V(0, l) �→ L2(0, l) defined by (3.2.13). Then we can make
use of Fourier series expansion

u(x, t) =
∞∑

n=1

un(t)ϕn(x) (3.2.14)

of the solution of the initial boundary value problem (3.2.1) via the orthonormal basis
{ϕn}∞n=1 in L2(0, l). Here

http://dx.doi.org/10.1007/978-3-319-62797-7_2
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un(t) = Fn√
λn

∫ t

0
sin

(√
λn(t − τ)

)
G(τ )dτ, t ∈ (0, T ] (3.2.15)

is the solution of the Cauchy problem

{
u′′
n(t) + λnun(t) = FnG(t), t ∈ (0, T ),

un(0) = 0, u′
n(0) = 0,

for each n = 1, 2, 3, . . . and Fn := (F, ϕn)L2(0,l) is the Fourier coefficient of the
function F ∈ L2(0, l).

Now we can use (3.2.14) and (3.2.15) to obtain the Fourier series expansion of
the input-output operator �, defined as (�F)(x) := u(x, T ; F):

(�F)(x) =
∞∑

n=1

(F, ϕn)L2(0,l) κnϕn(x), (3.2.16)

where κn is defined by (3.2.12).
To show that {ϕn}∞n=1 are eigenvectors of the input-output operator�, correspond-

ing to eigenvalues {κn}∞n=1, we replace F(x) by ϕm(x) in (3.2.16):

(�ϕm)(x) =
∞∑

n=1

(ϕm, ϕn)L2(0,l) κnϕn(x) = κmϕm(x).

This implies (3.2.11).
The proof of the self-adjointness of the operator � : L2(0, l) �→ L2(0, l) is the

same as in Lemma3.1.4. �

The assertions of Lemma3.2.3 can be proved for the problem of determining the
unknown spatial load F(x) from final velocity overdetermination.

Lemma 3.2.4 Let conditions (3.2.4) hold. Then the input-output operator � :
L2(0, l) �→ L2(0, l), (�F)(x) := ut (x, T ; F), corresponding to the inverse prob-
lem (3.2.1) and (3.2.3), is self-adjoint. Furthermore,

(�ϕn)(x) = κnϕn(x),

that is, {κn, ϕn} is the eigensystem of the input-output operator�, {ϕn}∞n=1 are ortho-
normal eigenvectors corresponding to eigenvalues {λn}∞n=1 of the differential opera-
tor � : V(0, l) �→ L2(0, l), defined by (3.2.13), and

κn =
∫ T

0
cos(

√
λn(T − t))G(t)dt, n = 1, 2, 3, . . . . (3.2.17)
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The Fourier series expansion of the input-output operator � corresponding to the
inverse problem (3.2.1) and (3.2.3) is

(�F)(x) =
∞∑

n=1

(F, ϕn)L2(0,l) κnϕn(x), (3.2.18)

where κn is defined by (3.2.17).
The Fourier series expansions (3.2.16) and (3.2.18) of the input-output operators

� and �, corresponding to the above inverse problems, show that the necessary
condition for bijectivity of these operators is the condition κn �= 0. Remark that this
is a main condition of Theorem2.5.1 in Sect. 2.5. It follows from formulae (3.2.12)
and (3.2.17) for the eigenvalues κn that even positivity of the time dependent source
G ∈ L2(0, T ) can not guarantee the condition κn �= 0 for unique determination of
the unknown source F(x). To show this explicitly consider the following examples.

Example 3.2.1 Identification of a spatial load in constant coefficient wave equation
from final state overdetermination

Consider the problem of determining the unknown spatial load F(x) in

⎧
⎨

⎩

utt = uxx + F(x), (x, t) ∈ �T := (0, 1) × (0, T );
u(x, 0) = 0, ut (x, 0) = 0, x ∈ (0, 1);
u(0, t) = 0, u(l, t) = 0, t ∈ (0, T ),

(3.2.19)

from the final state overdetermination (3.2.2).
For G(t) ≡ 1 formula (3.2.12) implies:

κn = 1

λn
[1 − cos(

√
λnT )], λn = π2n2, n = 1, 2, 3, . . . . (3.2.20)

Formula (3.2.12) shows that κn = 0, if nT = 2m, where m is a natural number.
Hence κn �= 0 for all n = 1, 2, 3, . . . if and only if

T �= 2m

n
, for all n = 1, 2, 3, . . . . (3.2.21)

Thus, for unique determination of the unknown source F(x) from final state overde-
termination (3.2.2), the final time T > 0 must satisfy the condition (3.2.21). �

Example 3.2.2 Identification of a spatial load in constant coefficient wave equation
from final velocity overdetermination

Consider now the problem of determining the unknown spatial load F(x) in
(3.2.19) from the final velocity overdetermination (3.2.3). Formula (3.2.17) implies
(G(t) ≡ 1):

http://dx.doi.org/10.1007/978-3-319-62797-7_2
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κn = 1√
λn

sin(
√

λnT ), λn = π2n2, n = 1, 2, 3, . . . . (3.2.22)

Hence κn = 0, if nT = m, where m = m(T ) is a natural number. This means that
the final time should satisfy the condition

T �= m

n
, f orall n = 1, 2, 3, . . . . (3.2.23)

Thus, for unique determination of the unknown source F(x) from the final velocity
overdetermination (3.2.2) the final time T > 0 must satisfy condition (3.2.23). �

As a matter of fact, both conditions (3.2.21) and (3.2.23) are equivalent and mean
that the value of T > 0 the final time cannot be a rational number. Evidently, in
practice for arbitrary given final time T > 0 the fulfilment of this necessary condition
is impossible. Thus, both final data overspecifications (3.2.2) and (3.2.3) for the wave
equation are not feasible.

3.3 Backward Parabolic Problem

As a next application of the above approach we consider now the backward parabolic
problem. Specifically, consider the problem of determining the unknown initial tem-
perature f (x) ∈ L2(0, l) in

⎧
⎨

⎩

ut = (k(x)ux )x , (x, t) ∈ �T := (0, l) × (0, T ],
u(x, 0) = f (x), x ∈ (0, l),
u(0, t) = 0, ux (l, t) = 0, t ∈ (0, T ),

(3.3.1)

from the measured temperature uT (x) at the final time t = T :

uT (x) := u(x, T ), x ∈ (0, l). (3.3.2)

This problem is defined as a backward parabolic problem (BPP).
Weapply the above approach to the backward parabolic problemdefinedby (3.3.1)

and (3.3.2). For this end, we denote by u(x, t; f ) be the weak solution of the forward
problem (3.3.1), for a given initial data f ∈ L2(0, l), and introduce the input-output
operator � : L2(0, l) �→ L2(0, l), defined by (� f )(x) := u(x, 0; f ), x ∈ (0, l).
Then the backward parabolic problem can be reformulated as the following operator
equation:

� f = uT , f ∈ L2(0, l). (3.3.3)

Using Lemma3.1.1, it can be easily proved that (3.3.3) is a linear compact opera-
tor. This, in particular, implies that backward parabolic problem (3.3.1) and (3.3.2)
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is ill-posed. We may use now Tikhonov regularization introducing the regularized
functional

Jα(F) := J (F) + 1

2
α‖ f ‖2L2(0,l), (3.3.4)

where

J (F) = 1

2
‖u(·, T ; f ) − uT ‖2L2(0,l), f ∈ L2(0, l) (3.3.5)

and α > 0 is the parameter of regularization.
The following lemma shows that the Fréchet gradient J ′(F) of Tikhonov func-

tional (3.3.5) can be derived via the solution ψ(x, t) := ψ(x, t; f ) of the adjoint
problem solution

⎧
⎨

⎩

ψt = −(k(x)ψx )x , (x, t) ∈ �T ;
ψ(x, T ) = u(x, T ; f ) − uT (x), x ∈ (0, l);
ψ(0, t) = 0, ψx (l, t) = 0, t ∈ [0, T ).

(3.3.6)

Note that this is the same adjoint problem (3.1.19), corresponding to the parabolic
inverse problem, with u(x, T ; F) replaced by u(x, T ; f ).

Lemma 3.3.1 Let conditions (3.1.3) hold. Denote by u(x, t; f ) the weak solution
of the parabolic problem (3.3.1) corresponding to a given initial data f ∈ L2(0, l).
ThenTikhonov functional (3.3.5) is Fréchet differentiable and for theFréchet gradient
J ′( f ) the following formula holds:

J ′( f )(x) = ψ(x, 0; f ), for a.e. x ∈ (0, l), (3.3.7)

where ψ(x, t; f ) is the weak solution of the adjoint problem (3.3.6).

Proof Let f, f +δ f ∈ L2(0, l) be given initial data and u(x, t; f ), u(x, t; f +δ f ) be
corresponding solutions of (3.3.1). Then δu(x, t; f ) := u(x, t; f +δ f )−u(x, t; f )
is the weak solution of the following parabolic problem

⎧
⎨

⎩

δut = (k(x)δux )x , (x, t) ∈ �T ,

δu(x, 0) = δ f (x), x ∈ (0, l),
δu(0, t) = 0, δux (l, t) = 0, t ∈ (0, T ].

(3.3.8)

We calculate the increment δ J ( f ) := J ( f + δ f ) − J ( f ) of functional (3.3.5):

δ J ( f ) =
∫ l

0
[u(x, T ; f ) − uT (x)]δu(x, T ; f )dx + 1

2

∫ l

0
[δu(x, T ; f )]2dx,(3.3.9)
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and then transform the first right hand side integral. Assuming that ψ(x, t) :=
ψ(x, t; f ) and δu(x, t; f ) := δu(x, t; f ) are solutions of problems (3.3.6) and
(3.3.8), accordingly, we have:

∫ l

0
[u(x, T ; f ) − uT (x)]δu(x, T ; f )dx =

∫ l

0
ψ(x, T )δu(x, T )dx

=
∫ l

0

{∫ T

0
(ψ(x, t)δu(x, t))t dt

}

dx +
∫ l

0
ψ(x, 0)δ f (x)dx

=
∫ T

0

∫ l

0
[ψtδu + ψδut ] dxdt +

∫ l

0
ψ(x, 0)δ f (x)dx

=
∫ T

0

∫ l

0
[−(k(x)ψx )xδu + ψ(k(x)δux )x ] dxdt +

∫ l

0
ψ(x, 0)δ f (x)dx

=
∫ T

0
[−k(x)ψxδu + k(x)δuxψ]x=l

x=0 dt +
∫ l

0
ψ(x, 0)δ f (x)dx .

Taking into account here the initial/final and boundary conditions in (3.3.6) and
(3.3.8) we obtain the following integral identity:

∫ l

0
[u(x, T ; f ) − uT (x)]δu(x, T ; f )dx =

∫ l

0
ψ(x, 0; f )δ f (x)dx,

for all f, δ f ∈ L2(0, l). With formula (3.3.9) this implies:

δ J (F) =
∫ l

0
ψ(x, 0; f )δ f (x)dx + 1

2

∫ l

0
[δu(x, T ; f )]2dx . (3.3.10)

The last right hand side integral is of the order O
(
‖δ f ‖2L2(0,l)

)
by estimate (3.1.8).

This completes the proof of lemma. �
Although the Lipschitz continuity of the Fréchet gradient (3.3.7) can be obtained

from the results given in Sect. 2.1, to show an explicit form of the Lipschitz constant,
we will prove it.

Lemma 3.3.2 Let conditions (3.1.3) hold. Then Fréchet gradient of Tikhonov func-
tional (3.3.5) is Lipschitz continuous with the Lipschitz constant L3 = 1:

‖J ′( f + δ f ) − J ′( f )‖L2(0,l) ≤ ‖δ f ‖L2(0,l), ∀ f, δ f ∈ L2(0, l). (3.3.11)

Proof By definition,

‖J ′( f + δ f ) − J ′( f )‖L2(0,l) := ‖δψ(·, 0; f )‖L2(0,l), (3.3.12)

where δψ(x, t; f ) := ψ(x, t; f + δ f ) − ψ(x, t; f ) is the weak solution of the
problem:

http://dx.doi.org/10.1007/978-3-319-62797-7_2
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⎧
⎨

⎩

δψt = −(k(x)δψx )x , (x, t) ∈ �T ;
δψ(x, T ) = δu(x, T ; f ), x ∈ (0, l);
δψ(0, t) = 0, ψx (l, t) = 0, t ∈ [0, T ).

(3.3.13)

and δu(x, t; f ) is the weak solution of the auxiliary problem (3.3.8). We use the
energy identity

1

2

d

dt

∫ l

0
(δψ(x, t))2 dx =

∫ l

0
k(x) (δψx (x, t))

2 dx

for the well-posed backward problem (3.3.13), integrate it on [0, T ] and use the final
condition δψ(x, T ) = δu(x, T ; f ), to deduce the estimate

∫ l

0
(δψ(x, 0; f ))2 dx ≤

∫ l

0
(δu(x, T ; f ))2 dx .

Then we use the energy identity

1

2

d

dt

∫ l

0
(δu(x, t))2 dx +

∫ l

0
k(x) (δux (x, t))

2 dx = 0

for the auxiliary problem (3.3.8) to obtain the estimate

∫ l

0
(δu(x, T ; f ))2 dx ≤

∫ l

0
(δ f (x))2 dx, ∀ f ∈ L2(0, l).

These estimates imply ‖δψ(·, 0; f )‖L2(0,l) ≤ ‖δ f ‖L2(0,l). With (3.3.12) this yields
the proof of the theorem. �

We can prove analogues of Corollaries3.1.1 and 3.1.2 for the backward parabolic
problem (3.3.1) and (3.3.2) in the same way.

Lemma3.1.4 can be adopted to the backward parabolic problem to derive main
properties of the input-output operator.

Lemma 3.3.3 Let conditions (3.1.3) hold. Then the input-output operator � :
L2(0, l) �→ L2(0, l), (� f )(x) := u(x, 0; f ), corresponding to the backward prob-
lem defined by (3.3.1) and (3.3.2), is self-adjoint. Moreover,

(�ϕn)(x) = κnϕn(x), (3.3.14)

that is, {κn, ϕn} is the eigensystem of the input-output operator �, where {ϕn}∞n=1
are orthonormal eigenvectors of the differential operator � : V(0, l) �→ L2(0, l),
defined by (3.1.34) corresponding to the eigenvalues {λn}∞n=1, and

σn ≡ κn = exp(−λnT ), n = 1, 2, 3, . . . (3.3.15)
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The proof follows from the proof of Lemma3.1.4 and is left as an exercise to the
reader.

Thus the singular system of the (compact) input-output operator� is {κn, ϕn, ϕn}.
The eigenvalues λn of the differential operator � : V(0, l) �→ L2(0, l), defined in
(3.1.34), are of order λn = O(n2) Then, as it follows from (3.3.15) that the singular
values κn of the input-output operator � are of orderO(exp(−n2)). This means that
the backward parabolic problem (3.3.1) and (3.3.2) is severely ill-posed.

Since {ϕn}∞n=1 forms a complete orthonormal system in L2(0, l) and � :
L2(0, l) �→ L2(0, l), (� f )(x) := u(x, 0; f ) is a self-adjoint operator, we have
N (�) = N (�∗) = {0}. Moreover, D(�†) = R(�) is dense in L2(0, l). Hence, for
uT ∈ L2(0, l) the first condition uT ∈ N (�∗)⊥ in Picard’s Theorem2.4.1 of Sect. 2.4
holds. Then we can reformulate this theorem for the backward problem defined by
(3.3.1) and (3.3.2).

Theorem 3.3.1 Let conditions (3.1.3) hold. Assume that uT ∈ L2(0, l) is a noise
free measured output data defined by (3.3.2). Then the operator equation � f = uT ,
corresponding to backward problem (3.3.1)–(3.3.2), has a solution if and only if

uT ∈ L2(0, l) and
∞∑

n=1

exp(λnT )u2T,n < ∞. (3.3.16)

In this case

f (x) =
∞∑

n=1

exp(λnT )uT,nϕn(x), x ∈ (0, l) (3.3.17)

is the solution of the operator equation �F = uT , where uT,n := (uT , ϕn) is the nth
Fourier coefficient of the measured output data uT (x) and ϕn(x) are the normalized
eigenfunctions corresponding to the eigenvalues λn of the operator � : V(0, l) �→
L2(0, l) defined by (3.1.34).

The proof of this theorem is the same as proof of Theorem3.1.3. �
The following example show that neither the truncated SVD nor Tikhonov regu-

larization can recover information about higher Fourier coefficients in (3.3.17).

Example 3.3.1 The truncated SVD and Tikhonov regularization for the backward
parabolic problem.

Consider the simplest backward parabolic problem, i.e. the problem of determining
the unknown initial temperature f (x) ∈ L2(0, l) in

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎨

⎩

ut = uxx , (x, t) ∈ �T := (0, π) × (0, 1],
u(x, 0) = f (x), x ∈ (0, π),

u(0, t) = 0, u(l, t) = 0, t ∈ (0, 1),
uT (x) := u(x, 1), x ∈ (0, π),

(3.3.18)

http://dx.doi.org/10.1007/978-3-319-62797-7_2
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assuming k(x) ≡ 1, l = π and T = 1. In this case the eigenvalues λn and the nor-
malized eigenfunctions ϕn(x) of the operator (�ϕ)(x) := −ϕ′′(x), with the Dirichlet
conditions u(0, t) = u(l, t) = 0, are

λn = n2, ϕn(x) = √
2/π sin nx, n = 1, 2, 3, . . . .

The singular values of the input-output operator � are:

κn = exp(−n2), n = 1, 2, 3, . . . .

Let uδ
T ∈ L2(0, 1) be a noisy data and we wish to reconstruct the initial data f δ ∈

L2(0, 1) by the truncated SVD. Then assuming 1/N a parameter of regularization
we may consider the regularization strategy

(RN (δ)uδ
T

)
(x) :=

N (δ)∑

n=1

exp(n2) uδ
T,nϕn(x), (3.3.19)

where uδ
T,n = (uδ

T , φn)L2(0,1) is the nth Fourier coefficient of the noisy output
data uδ

T (x). Let us estimate the approximation error ‖RN (δ)uδ
T − �†uT ‖L2(0,1) as

in Sect.1.4. We have:

∥
∥RN (δ)uδ

T − �†uT

∥
∥2

L2(0,1) ≤ 2

∥
∥
∥
∥
∥

N (δ)∑

n=1

exp(n2) (uδ
T,n − uT,n)ϕn(x)

∥
∥
∥
∥
∥

2

L2(0,1)

+ 2

∥
∥
∥
∥
∥
∥

∞∑

n=N (δ)+1

exp(n2) uT,nϕn(x)

∥
∥
∥
∥
∥
∥

2

L2(0,1)

.

Hence

∥
∥RN (δ)uδ

T − �†uT

∥
∥2

L2(0,1)

≤ 2 exp(2N (δ)2)δ2 + 2
∞∑

n=N (δ)+1

exp(2n2)u2T,n. (3.3.20)

Thefirst termof the right hand side of (3.3.20), i.e. the data error increase dramatically
by increasing N (δ), due to the term exp(2N (δ)2), if even the noise level δ > 0 is
small enough. This means that we may use only the first few Fourier coefficients of
(3.3.19) to obtain an approximate solution by the truncated SVD. For example, if
even δ = 10−2, we can use only the first two terms of this series, since for N (δ) = 2
the data error is 2 exp(2N (δ)2)δ2 � 6000 × 10−4 = 0.6. By adding the next term
will make this error equals to 1.31 × 104! Moreover, one needs to take into account
also the contribution of the second term of the right hand side of (3.3.20), i.e. the
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approximation error. The term exp(2n2) here shows that the approximation error
also does dramatically increase, as N increases (except the case when the Fourier
coefficients uT,n of the output decay faster than exp(−N (δ)2), which holds only for
infinitely differentiable functions).

Let us apply now Tikhonov regularization to the inverse problem (3.3.18). We use
estimate (3.3.21) in Theorem3.1.5, adopting it to the considered problem. Then we
get:

‖RN (δ)

α(δ) u
δ
T − f ‖2L2(0,l) ≤

δ2

α
+ 4α(δ)

(1 + √
α(δ) )2

N (δ)∑

n=1

exp(2n2)u2T,n + 2
∞∑

N (δ)+1

exp(2n2)u2T,n. (3.3.21)

Following the selection (3.1.83) of the cutoff parameter N (δ) and taking into account
that κn = exp(−n2), we deduce: no matter how small the parameter of regularization
α(δ) > 0 was selected, there exists such a natural number N = N (δ) that

min
1≤n≤N (δ)

exp(−2n2) = exp(−2N (δ)2) ≥ √
α > exp(−2(N (δ) + 1)2).

This implies that N (δ) = O(
√
ln α(δ)/2). Assume again that the noise level is very

low: δ = 10−3. We choose the parameter of regularization as α(δ) = 10−5 from the
requirements (3.1.78) of Theorem3.1.5. Then

√
ln α(δ)/2 � 1.7, which means that

only the first two Fourier coefficients can be used in the N th partial sum

(
RN (δ)

α(δ) u
δ
T

)
(x) :=

N (δ)∑

n=1

q(α(δ); κn)

κn
uδ
T,nϕn(x), q(α; κ) = κ2

κ2 + α

for recovering the initial data. Remark that we did not take into account an influence
of the last right hand side terms of (3.3.21) to the above error, although these terms
need to be taken into account also. �

Remark, thatDuhamel’s Principle for heat equation illustrates relationshipbetween
the singular values corresponding to the inverse source problem and the backward
problem for heat equation. Let v(x, t; τ), (x, t) ∈ �τ , be the solution of the problem

⎧
⎨

⎩

vt (x, t; τ) = (k(x)vx (x, t; τ))x , (x, t) ∈ �τ ;
v(x, τ ; τ) = F(x)G(τ ), x ∈ (0, l);
v(0, t; τ) = 0, vx (l, t) = 0, t ∈ (0, T ]

(3.3.22)

corresponding to a fixed value of the parameter τ ∈ [0, T ], where �τ := {(x, t) ∈
R

2 : x ∈ (0, l), t ∈ (τ, T ]}. Then, by Duhamel’s Principle,

u(x, t) =
∫ t

0
v(x, t; τ)dτ, τ ∈ (0, t], t ∈ (0, T ] (3.3.23)
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is the solution of the problem

⎧
⎨

⎩

ut = (k(x)ux )x + F(x)G(t), (x, t) ∈ �T ;
u(x, 0) = 0, x ∈ (0, l);
u(0, t) = 0, ux (l, t) = 0, t ∈ (0, T ].

(3.3.24)

For each fixed τ ∈ (0, T ], the problem of determining the initial data F(x) in
(3.3.22) from the final output data uT (x) := u(x, T ) is severely ill-posed. While the
problem of determining the unknown space-wise dependent source F ∈ L2(0, l) in
(3.3.24) from the same final data is moderately ill-posed. This change of degree of
ill-posedness is due to the integration in (3.3.23). Specifically, formula (3.1.35) is
obtained from formula (3.3.15) via this integration (3.3.23) taking into account the
factor G(t).

Finally, to compare the behavior of the singular values, we consider the inverse
source problem (3.1.31) for heat equation (ISPH), the backward parabolic problem
(BPP) defined by (3.3.1) and (3.3.2) and the inverse source problem (3.2.1) and
(3.2.2) forwave equation (ISPW).Assuming, for simplicity, thatG(t) ≡ 1, k(x) = 1,
κ(x) = 1, l = π , T = 1, we obtain the following formulae for the singular values
σn ≡ κn of these problems:

⎧
⎨

⎩

σn = [
1 − exp(−(n − 1/2)2)

]
(n + 1/2)−2 ISPH;

σn = exp(−(n − 1/2)2), n = 1, 2, 3, . . . BPP;
σn = [1 − cos n]n−2 ISPW.
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Fig. 3.3 Behavior of the singular values
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The behavior of the singular values σn , depending on n = 1, 30, is shown in
Fig. 3.3. This figure shows n−2-decay and exp(n−2)-decay characters of the singular
values corresponding to ISPH and BPP, respectively. The behavior of the singular
values corresponding to ISPW is as an oscillating function of n that also decays, as
n → ∞.

3.4 Computational Issues in Inverse Source Problems

Any numerical method for inverse problems related to PDEs requires, first of all,
construction of an optimal computational mesh for solving corresponding direct
problem. This mesh needs to be fine enough in order to obtain an accurate numerical
solution of the direct problem, i.e. to minimize the computational noise level in
synthetic output data, on one hand. On the other hand, an implementation of any
iterative (gradient) method for an inverse problem requires solving the direct and
the corresponding adjoint problems at each iteration step. Hence, a too fine mesh
for numerical solving of these problems is sometimes unnecessary and increases
the computational cost. Taking into account that the weak solution of the direct
problem (3.1.1) is in an appropriate Sobolev space, the most appropriate method for
the discretization and then solving of these problems, is the Finite Element Method
(FEM). This method with continuous piecewise quadratic basic functions, which is
most appropriate for theweak solution, is used here in all computational experiments.
The second important point is that, the approach given in Sect. 3.3 allows to derive
an explicit gradient formula. Hence, having explicit gradient formula for the above
inverse problem with final data, it is reasonable to use in numerical solving gradient
type algorithms, in particular, the Conjugate Gradient (CG) Algorithm. Moreover, as
we explain below, the Lipschitz continuity of the gradient of the Tikhonov functional
J (F) impliesmonotonicity of the numerical sequence {J (F (n)}, where F (n) is the nth
iteration of the CG algorithm. As a result, the CG algorithm is an optimal algorithm
in numerical solving of this class of inverse problems.

The last important point in numerical solving of ill-posed problems is that employ-
ing the same mathematical model to generate a synthetic output data, as well as to
invert it, may lead to trivial inversion. This situation is defined in [19] as an “inverse
crime”. As it is stated there, to avoid this trivial inversion “it is crucial that the syn-
thetic data be obtained by a forward solver which has no connection to the inverse
solver”. To avoid an inverse crime, in all computational results below coarser mesh
is used for generation of a synthetic output data, and a finer mesh is used in the inver-
sion algorithm. All numerical analysis in this section will be given for the inverse
problem (3.1.31) related to the heat equation.
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3.4.1 Galerkin FEM for Numerical Solution of Forward
Problems

In this subsection we will consider this direct problem governed by the following
initial-boundary value problem:

⎧
⎨

⎩

ut = (k(x)ux )x + F(x)G(t), (x, t) ∈ �T := (0, l) × (0, T ];
u(x, 0) = u0(x), x ∈ (0, l);
u(0, t) = 0, ux (1, t) = 0, t ∈ (0, T ].

(3.4.1)

First we will introduce semi-discrete analogue of this problem, using the continuous
piecewise quadratic basic functions. Then applying timediscretization,wewill derive
fully discrete analogue of the direct problem (3.1.1).

Let ωh := {xi ∈ (0, l] : xi = ih, i = 1, Nx } be a uniform space mesh with the
mesh parameter h = 1/Nx > 0. The quadratic polynomials

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξi (x) =
⎧
⎨

⎩

2(x − xi−1/2)(x − xi−1)/h2, x ∈ [xi−1, xi ),
2(x − xi+1/2)(x − xi+1)/h2, x ∈ [xi , xi+1),

0, x /∈ [xi−1, xi+1],
i = 1, Nx − 1;

ξN (x) =
{
0, x ∈ [0, xNx−1),

2(x − xN−1/2)(x − xNx−1)/h2, x ∈ [xNx−1, xNx ];

ηi (x) =
{−4(x − xi−1)(x − xi )/h2, x ∈ [xi−1, xi ],
0, x /∈ [xi−1, xi ], i = 1, Nx ,

with the compact supports are defined as 1D continuous piecewise quadratic basic
functions in FEM (Fig. 3.4). Here the midpoints xi−1/2 := (i − 1/2)h, i = 1, Nx

are also defined as auxiliary nodes, in addition to the nodal points xi ∈ ωh of the
uniform space mesh ωh .

Then the function

uh(x, t) =
N∑

i=1

ci (t)ξi (x) +
Nx∑

i=0

di (t)ηi (x)

is a piecewise-quadratic approximation of u(x, t) in the finite-dimensional subspace
Vh ⊂ H1(0, l) spanned by the set of basis functions {ξi (x)}∪{ηi (x)}, where ci (t) :=
uh(xi , t) and di (t) := uh(xi−1/2, t). For convenience we treat here and below t ∈
(0, T ] as a parameter and the functions u(t) and uh(t) as mappings u : [0, T ] �→ V
and uh : [0, T ] �→ Vh , defined as u(t)(x) := u(x, t) and uh(t)(x) := uh(x, t), x ∈
(0, l). For the interpolation with piecewise quadratic basic functions the following
estimates hold:

‖u − uh‖V(0,l) ≤ Ch2|u|H 3(0,l), C > 0,
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Fig. 3.4 The piecewise quadratic basis functions

whichmeans the second-order accuracy in space, in the norm of H 1(0, l) [101]. Here
| · |H 3(0,l) is the semi-norm of u ∈ H 3(0, l) and V := {v ∈ H 1(0, l) : v(0, t) = 0}.

We will apply Galerkin FEM for discretization of the direct and adjoint problems
(3.4.1) and (3.1.19). Find uh(t) ∈ SN such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈∂t uh, ξi 〉 + a(uh, ξi ) = G(t)〈F(x), ξi 〉, t ∈ (0, T ];
〈uh(0), ξi 〉 := 〈u0, ξi 〉, i = 1, Nx ,

〈∂t uh, ηi 〉 + a(uh, ηi ) = G(t)〈F(x), ηi 〉, t ∈ (0, T ];
〈uh(0), ηi 〉 := 〈u0, ηi 〉, i = 0, Nx ,

(3.4.2)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

〈∂t uh, ξi 〉 := ∫ xi+1

xi
ut (x, t)ξi (x)dx,

a(uh, ξi ) := ∫ xi+1

xi
k(x)u′

h(x)ξ
′
i (x)dx,

〈F(x), ξi 〉 := ∫ xi+1

xi
F(x)ξi (x)dx, i = 0, Nx ;

⎧
⎨

⎩

〈∂t uh, ηi 〉 := ∫ xi+1

xi
ut (x, t)ηi (x)dx,

a(uh, ηi ) := ∫ xi+1

xi
k(x)u′

h(x)η
′
i (x)dx,

〈F(x), ηi 〉 := ∫ xi+1

xi
F(x)ηi (x)dx, i = 0, Nx .

(3.4.3)

Introducing the uniform time mesh ωτ := {t j ∈ (0, T ] : t j = jτ, j = 1, Nt },
with mesh parameter τ = T/Nt , by standard Galerkin FEM procedure, we then
obtain from the semi-discrete Galerkin discretization (3.4.2)–(3.4.3) the following
full discretization by using Crank-Nicolson method:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈
u j
h+u j+1

h
τ

, ξi

〉
+ a(u j

h ,ξi )+a(u j+1
h ,ξi )

2 = G(t j )+G(t j+1)

2 〈F(x), ξi 〉;
〈uh(0), ξi 〉 := 〈u0, ξi 〉, t j ∈ ωτ , xi ∈ ωh .

〈
u j
h+u j+1

h
τ

, ηi

〉
+ a(u j

h ,ηi )+a(u j+1
h ,ηi )

2 = G(t j )+G(t j+1)

2 〈F(x), ηi 〉;
〈uh(0), ηi 〉 := 〈u0, ηi 〉, t j ∈ ωτ , xi ∈ ωh .

(3.4.4)

The FEM scheme (3.4.4) is used in subsequent computational experiments for
solving the forward and backward parabolic problems.

3.4.2 The Conjugate Gradient Algorithm

Above derived explicit gradient formulae for Tikhonov functionals allow use of
the classical version of the Conjugate Gradient Algorithm for the numerical recon-
struction of an unknown source. We define the convergence error (or discrepancy)
e(n; F; δ) and the accuracy error E(n; F; δ):

{
e(n; F (n); δ) := ‖�F (n) − uδ

T ‖L2(0,T ),

E(n; F (n); δ) := ‖F − F (n)‖L2(0,l),
(3.4.5)

where� : L2(0, l) �→ L2(0, l), (�F)(x) := u(x, T ; F) is the input-output operator.
Here and below uδ

T (x) is the noisy data:

‖uT − uδ
T ‖L2(0,l) ≤ δ, ‖uδ

T ‖L2(0,l) > δ, δ > 0. (3.4.6)

The Conjugate Gradient Algorithm discussed below is applied to the Tikhonov
functional

J (F) = 1

2
‖�F − uδ

T ‖2L2(0,l), (3.4.7)

corresponding to the normal equation �∗�F = �∗uδ
T , although the same technique

remains hold for the regularized form

Jα(F) = J (F) + 1

2
α‖F‖2L2(0,l) (3.4.8)

of the Tikhonov functional corresponding to the regularized form of normal equation
(�∗� + α I ) Fα = �∗uδ

T .
The iterative Conjugate Gradient Algorithm (subsequently, CG-algorithm) for

the functional (3.4.7) consists of the following basic steps. All norms and scalar
products below are in L2(0, l) and will be omitted.

Step 1. For n = 0 choose the initial iteration F (0)(x).
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Step 2. Compute the initial descent direction

p(0)(x) := J ′(F (0))(x). (3.4.9)

Step 3. Find the descent direction parameter

βn =
(
J ′(F (n)), p(n)

)

‖�p(n)‖2 . (3.4.10)

Step 4. Find next iteration

F (n+1)(x) = F (n)(x) − βn p
(n)(x) (3.4.11)

and compute the convergence error e(n; F (n); δ).
Step 5. If the stopping condition

e(n; F (n); δ) ≤ τMδ < e(n; F (n−1); δ), τM > 1, δ > 0 (3.4.12)

holds, then go to Step 7.
Step 6. Set n := n + 1 and compute

{
p(n)(x) := J ′(F (n))(x) + γn p(n−1)(x),

γn = ‖J ′(F (n))‖2
‖J ′(F (n−1))‖2

(3.4.13)

and go to Step 3.
Step 7. Stop the iteration process.

This version of the CG-algorithm is usually called in literature as CGNE, i.e. the
CG-algorithm applied to the Normal Equation [23]. We will follow here the version
of the CG-algorithm given in [54], adopting the results given here to the considered
class of inverse problems.

First of all we make some important remarks concerning formulae (3.4.9) and
(3.4.10). It follows from gradient formula (3.1.29) the Fréchet derivative of Tikhonov
functional that

J ′(F (n)) = �∗ (
�F (n) − uT

)
, F (n) ∈ L2(0, l). (3.4.14)

Hence, if the CG-algorithm starts with the initial iteration F (0)(x) ≡ 0, then

J ′
α(F (0)) = −�∗uT . (3.4.15)
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With formula (3.4.9) this implies that

p(0) = −�∗uT . (3.4.16)

This initial descent direction is used in some versions of the CG-algorithm.
Taking into account above gradient formula (3.4.14), we can rewrite formula

(3.4.10) as follows:

(
J ′(F (n)), p(n)

)

‖�p(n)‖2 = (�F (n) − uT ,�p(n))

‖�p(n)‖2 , (3.4.17)

Lemma 3.4.1 Formula (3.4.10) for the descent direction parameter βn is equivalent
to the following formula:

βn = ‖J ′(F (n))‖2
‖�p(n)‖2 . (3.4.18)

Proof By (3.4.11) and (3.4.14) we have:

J ′(F (n+1)) = �∗ (
�(F (n) − βn p

(n)) − uT
) = �∗ (

�F (n) − uT
) − βn�

∗�p(n).

Hence

J ′(F (n+1)) = J ′(F (n)) − βn�
∗�p(n). (3.4.19)

Using this formula we show the orthogonality

(
p(n), J ′ (F (n+1)

)) = 0. (3.4.20)

Indeed,

(
p(n), J ′(F (n+1))

) = (
p(n), J ′(F (n))

) − βn
(
p(n), �∗�p(n)

)

= (
p(n), J ′(F (n))

) − βn
(
�p(n), �p(n)

) = 0,

by formula (3.4.10).
Substituting now formulae (3.4.11) and (3.4.13) in (3.4.10) and using the the

orthogonality (3.4.20), we deduce:

βn =
(
J ′(F (n)), J ′(F (n))) + γn p(n−1)

)

‖�p(n)‖2 = ‖J ′(F (n))‖2
‖�p(n)‖2 .

This implies (3.4.18). �

Note that formula (3.4.18) is more convenient in computations.
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Some orthogonality properties of the parameters of the CG-algorithm are sum-
marized in the following lemma.

Lemma 3.4.2 Let conditions (3.1.3) and (3.1.69) hold. Denote by {J ′(F (n))} ⊂
L2(0, l) and {p(n)} ⊂ L2(0, l), n = 0, 1, 2, . . . the sequences of gradients and
descent directions obtained by CG-algorithm. Then the gradients are orthogonal
and the descent directions are �-conjugate, that is,

(
J ′(F (n)), J ′(F (k))

) = 0,(
�p(n), �p(k)

) = 0, for all n �= k,
(3.4.21)

where � : L2(0, l) �→ L2(0, l) is the input-output mapping corresponding to the
inverse source problem (3.1.1) and (3.1.2).

Proof To prove both assertions of (3.4.21) we use simultaneous induction with
respect to n. Let n = 1. For k = 0 we have:

(
J ′(F (0)), J ′(F (1))

) := (
J ′(F (0)), J ′(F (0))

) − β0
(
J ′(F (0)),�∗�p(0)

)

= ‖J ′(F (0))‖2 − ‖J ′(F (0))‖2
‖�p(0)‖2

(
�J ′(F (0)),�p(0)

) = 0,

due to (3.4.9) and (3.4.10). Further, using this orthogonality we deduce:

(
�p(0), �p(1)

) = (
�∗�p(0), p(1)

) = 1

β0

(
J ′(F (0)) − J ′(F (1)), p(1)

)

= 1

β0

(

J ′(F (1)) + ‖J ′(F (1))‖2
‖J ′(F (0))‖2 J ′(F (0)), J ′(F (0)) − J ′(F (1))

)

= 0,

by (3.4.13) and (3.4.19).
Assume now that the assertions

(
J ′(F (n)), J ′(F (k))

) = 0,
(
�p(n), �p(k)

) = 0, for all k = 1, n − 1
(3.4.22)

hold. We need to prove that

(
J ′(F (n+1)), J ′(F (k))

) = 0,
(
�p(n+1), �p(k)

) = 0, for all k = 1, n.
(3.4.23)

First we prove these assertions for k = 1, n − 1. To prove the first assertion of
(3.4.23), we use (3.4.19), then the first assertion of (3.4.22), and finally formula
J ′(F (n))(x) = p(n)(x) − γn p(n−1)(x) obtained from (3.4.13). Then we get:
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(
J ′(F (n+1)), J ′(F (k))

) = (
J ′(F (n)) − βn�

∗�p(n), J ′(F (k))
)

= −βn
(
�∗�p(n), J ′(F (k))

)

= −βn
(
�∗�p(n), p(k) − γk p(k−1)

)

= −βn
(
�p(n), �p(k) − γk�p(k−1)

)
,

(3.4.24)

for all k = 1, n − 1. By (3.4.22) the right hand side scalar product is zero.
We prove the second assertion of (3.4.23) for k = 1, n − 1, in the similar way by

using assertions (3.4.22) with formulae (3.4.13) and (3.4.19). We have:

(
�p(n+1), �p(k)

) = (
�J ′(F (n+1)) + γn�p(n), �p(k)

)

= (
�J ′(F (n+1)),�p(k)

) = (
J ′(F (n+1)),�∗�p(k)

)

= 1
βn

(
J ′(F (n+1)), J ′(F (k)) − J ′(F (k+1))

) = 0.

To complete the induction we need to prove assertions (3.4.23) for k = n. For the
first of them we use the same technique as in (3.4.24):

(
J ′(F (n+1)), J ′(F (n))

) = (
J ′(F (n)) − βn�

∗�p(n), J ′(F (n))
)

= ‖J ′(F (n))‖2 − βn
(
�∗�p(n), J ′(F (n))

)

= ‖J ′(F (n))‖2 − βn
(
�p(n), �J ′(F (n))

)

= ‖J ′(F (n))‖2 − βn
(
�p(n), �(p(n) − γn p(n−1))

)

= ‖J ′(F (n))‖2 − ‖J ′(F (n))‖2
‖�p(n)‖2

(
�p(n), �p(n)

) = 0.

The second assertion of (3.4.23)

(
�p(n+1), �p(n)

) = 0.

can be proved in the same way. �

The detailed results related to application of the CG-algorithm to ill-posed prob-
lems are treated in great detail in books [23, 34, 52] and references given therein,
we will use only some of these results, concerning to the considered here class of
inverse problems. The most important convergence result is given in the convergence
theorem (Theorem 7.9 [23]). We give this theorem slightly modifying it.

Theorem 3.4.1 Let F (n) be iterates defined by the CG-algorithm with the stopping
rule (3.4.12).
(a) If uδ

T ∈ D(�†), then the iterates F (n) converge to �†uT , as n → ∞.
(b) If uT /∈ D(�†), then ‖F (n)‖ → ∞, as n → ∞.

This theorem implies, in particular, that the iteration must be terminated appropri-
ately when dealing with perturbed (or noisy) data uδ

T /∈ D(�†), due to numerical
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instabilities. Remark that here and below uδ
T ∈ L2(0, l) is the noisy data with the

noise level δ > 0, by definition (3.4.6), that is, ‖uδ
T − uT ‖L2(0,l) ≤ δ.

The termination index n = n(δ, uδ
T ) in the stopping condition (3.4.12) of the CG-

algorithm is defined according toMorozov’s discrepancy principle given in Sect. 2.6.
If uδ

T ∈ D(�†) and the CG-algorithm is stopped according to discrepancy principle,
then this algorithm guarantees a finite termination index n(δ, uδ

T ).

3.4.3 Convergence of Gradient Algorithms for Functionals
with Lipschitz Continuous Fréchet Gradient

Let us return to the inverse source problemdiscussed in Sect. 3.3. Lemma3.1.3 asserts
the Lipschitz continuity J ∈ C1,1 of Fréchet gradient of Tikhonov functional J (F)

corresponding to the final data inverse problem for heat equation. Here we will show
that an important advantage of gradient methods comes when dealing with this class
of functionals.

We start with a simple gradient-type iteration algorithm, usually used in solving
ill-posed problems and defined also as Landweber iteration algorithm. Consider the
functional J : H �→ R+ defined on a real Hilbert space H . Denote by {v(n)} ⊂ U
the iterations defined as follows:

v(n+1) = v(n) − ωn J
′(v(n)), n = 0, 1, 2, . . . , (3.4.25)

where v(0) ∈ U is an initial iteration and ωn > 0 is a relaxation parameter, defined
by the minimum problem:

fn(ωn) := inf
ω≥0

fn(ω), fn(ω) := J
(
v(n) − ωJ ′(v(n))

)
, (3.4.26)

for each n = 0, 1, 2, . . . . We assume here and below, without loss of generality, that
J ′(v(n)) �= 0, for all n = 0, 1, 2, . . . .

Lemma 3.4.3 Let U ⊂ H be a convex set of a real Hilbert space, J : U �→ R+
be a functional defined on U ⊂ H. Assume that the functional J (u) has Lipschitz
continuous Fréchet gradient, i.e. J ∈ C1,1, that is, for all u1, u2 ∈ U

|J ′(u) − J ′(v)| ≤ L‖u − v‖H , (3.4.27)

where L > 0 is the Lipschitz constant. Then for all u1, u2 ∈ U the following
inequality hods:

|J (u1) − J (u2) − (
J ′(u2), u1 − u2

) | ≤ 1

2
L‖u1 − u2‖2H . (3.4.28)
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Proof Assuming u1 = u + h, u2 = u in the increment formula

J (u + h) − J (u) =
∫ 1

0

(
J ′(u + θh)), h

)
dθ,

we get

J (u1) − J (u2) =
∫ 1

0

(
J ′(u2 + θ(u1 − u2)), u1 − u2

)
dθ.

Using the Lipschitz condition (3.4.27) we conclude that

|J (u1) − J (u2) − (
J ′(u2), u1 − u2

) |
=

∫ 1

0

(
J ′(u2 + θ(u1 − u2)) − J ′(u2), u1 − u2

)
dθ

≤ L‖u1 − u2‖2H
∫ 1

0
θdθ = 1

2
L‖u1 − u2‖2H .

This completes the proof. �

Lemma 3.4.4 Let conditions of Lemma3.4.3 hold. Assume that J∗ := infU J (u) >

−∞. Denote by {v(n)} ⊂ U the a sequence of iterations defined by the gradient
algorithm (3.4.25) and (3.4.26). Then {J (v(n))} ⊂ R+ is a monotone decreasing
sequence and

lim
n→∞ ‖J ′(v(n))‖H = 0, (3.4.29)

Proof Use inequality (3.4.28), taking here v = v(n) and u = v(n)−ωJ ′(v(n)),ω > 0.
Then we get:

J
(
v(n) − ωn J

′(v(n))
) − J (v(n)) + ωn‖J ′(v(n))‖2H ≤ Lω2

n

2

∥
∥J ′(v(n))

∥
∥2

H .

Due to (3.4.25), J (v(n+1)) = J
(
v(n) − ωn J ′(v(n))

)
. Using this in the above inequality

we obtain:

J (v(n)) − J (v(n+1)) ≥ ωn (1 − Lωn/2) ‖J ′(v(n))‖2H , ∀ω ≥ 0.

The function g(ωn) = ωn (1 − Lωn/2), ωn > 0 reaches its minimum value g∗ :=
g(ω̃n) = 1/(2L) at ω̃n = 1/L . Hence

J (v(n)) − J (v(n+1)) ≥ 1

2L
‖J ′(v(n))‖2H , ∀v(n), v(n+1) ∈ U. (3.4.30)
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The right hand side is positive, since J ′(v(n)) �= 0, which means that the sequence
{J (v(n))} ⊂ R+ is monotone decreasing. Since this sequence is bounded below,
this assertion also implies convergence of the numerical sequence {J (v(n))}. Then
passing to the limit in the above inequality, we obtain the second assertion (3.4.29)
of the lemma. �

Lemma3.4.4 shows that in the case of Lipschitz continuity of the gradient J ′(v)

the relaxation parameter ω > 0 can be estimated via the Lipschitz constant L > 0.
Let us apply this lemma to the Tikhonov functional given by (3.4.7) and find the

value of the relaxation parameter ωn > 0 at nth iteration via the gradient J ′(F (n)).
Using (3.4.26) we conclude that

f (ω) := J
(
F (n) − ωn J

′(F (n))
) = 1

2

∥
∥�F (n) − ωn�J ′(F (n)) − uδ

T

∥
∥2

= 1

2

∥
∥�F (n) − uδ

T

∥
∥2 − ωn

(
�F (n) − uδ

T ,�J ′(F (n))
) + 1

2
ω2
n

∥
∥�J ′(F (n))

∥
∥2

.

Since the relaxation parameter is defined as a solution of the minimum problem
(3.4.26), from the condition f ′(ωn) = 0 we obtain:

ωn :=
(
�F (n) − uδ

T ,�J ′(F (n))
)

∥
∥�J ′(F (n))

∥
∥2 =

(
�∗(�F (n) − uδ

T ), J ′(F (n))
)

∥
∥�J ′(F (n))

∥
∥2 .

But it follows from the gradient formula (3.4.14) that J ′(F (n)) = �∗ (
�F (n) − uT

)
.

Hence we arrive at the formula

ωn =
∥
∥J ′(F (n))

∥
∥2

∥
∥�J ′(F (n))

∥
∥2 . (3.4.31)

This formula with (3.4.18) illustrate the similarity and dissimilarity between the
descent direction parameter βn in the CG-algorithm and the relaxation parameter ωn

in the Landweber iteration algorithm. These parameter coincide only for n = 0, i.e.
β0 = ω0, due to formula (3.4.9). As a consequence, the first iterations obtained by
these algorithms are also the same. Comparison of the numerical results obtained by
these algorithms will be given below.

It turns out that, for a functional with Lipschitz continuous Fréchet gradient the
rate of convergence of the Landweber iteration algorithm can also be estimated.

Lemma 3.4.5 Let, in addition to conditions of Lemma3.4.3, J : H �→ R+ with
J∗ := infU J (u) > −∞ is a continuous convex functional. Assume that the set
M(v(0)) := {u ∈ H : J (u) ≤ J (v(0))}, where v(0) is an initial iteration, is
bounded. Then the a sequence of iterations {v(n)} ⊂ U defined by the gradient
algorithm (3.4.25) and (3.4.26) is a minimizing sequence, i.e.

lim
n→∞ J (v(n)) = J∗.
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Moreover, for the rate of convergence of the sequence {J (v(n))} following estimate
holds:

0 ≤ J (v(n)) − J∗ ≤ 2L d n−1, n = 1, 2, 3, . . . , (3.4.32)

where L > 0 is the Lipschitz constant and d := sup ‖u − v‖H , u, v ∈ M(v(0)) is
the diameter of the setM(v(0)).

Proof It is known that the minimum problem

J∗ = inf
M(u(0))

J (u)

for a continuous convex functional in a bounded closed and convex set has a solution.
Hence each minimizing sequence {v(n)} ⊂ M(v(0)) weakly converges to an element
u∗ ∈ U∗ of the solution set U∗ := {u ∈ M(v(0)) : J (u) = J∗}, that is J (v(n)) →
J (u∗), as n → ∞.

To prove the rate of the convergence, we introduce the numerical sequence {an}
defined as

an := J (v(n)) − J (u∗), n = 1, 2, 3, . . . . (3.4.33)

For a functional with Lipschitz continuous Fréchet gradient convexity is equivalent
to the following inequality:

J (v(n)) − J (u∗) ≤ (
J ′(v(n)), v(n) − u∗

)
.

Applying to the right hand the Cauchy-Schwartz inequality we conclude that

an ≤ ‖J ′(v(n))‖‖v(n) − u∗‖ ≤ d‖J ′(v(n))‖.

With estimate (3.4.28) and (3.4.33) this implies:

a2n ≤ 2L d2
[
J (v(n)) − J (v(n+1))

] = 2L d2[an − an+1].

Thus the numerical sequence {an} defined by (3.4.33) has the following properties:

a2n > 0, an − an+1 ≥ 1

2L d2
a2n, n = 1, 2, 3, . . . . (3.4.34)

Evidently {an} is a monotone decreasing sequence with an/an+1 > 1. Using these
properties we prove now that an = O(n−1). Indeed, for all k = 0, n − 1 we have:
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1

ak+1
− 1

ak
= ak − ak+1

akak+1
≥ 1

2L d2

a2k
akak+1

≥ 1

2L d2

ak
ak+1

>
1

2L d2
, n = 1, 2, 3, . . . .

Summing up these inequalities and using inequalities (3.4.34) for each summand
we deduce that

1

an+1
− 1

a1
:=

n∑

k=1

(
1

ak+1
− 1

ak

)

≥ n

2L d2
, n = 1, 2, 3, . . . .

This implies that an = O(n−1). Taking into account (3.4.33) we arrive at the estimate
of the rate of the convergence (3.4.32). �

3.4.4 Numerical Examples

In this subsection we present some numerical examples to show the performance
analysis of the CG-algorithm. Consider the inverse problem of determining an
unknown source term F(x) in

⎧
⎨

⎩

ut = (k(x)ux )x + F(x)G(t), (x, t) ∈ �T := (0, l) × (0, T ];
u(x, 0) = 0, x ∈ [0, l];
u(0, t) = 0, u(l, t) = 0, t ∈ (0, T ),

(3.4.35)

from the final data

uT (x) := u(x, T ), x ∈ [0, l]. (3.4.36)

In all examples below the fine mesh with the mesh parameters Nx = 201 and
Nt = 801 is used in the FEM scheme (3.4.4) to generate the noise free synthetic
output data uT,h . Remark that the computational noise level defined as δc := ‖uT −
uT,h‖L2

h(0,1)
/‖uT ‖L2

h(0,1)
, where uT and uT,h outputs obtained from the exact and

numerical solutions of the direct problem, on this fine mesh is estimated as 10−8.
With this accuracy the synthetic output data uT,h generated on the fine mesh will be
assumed as a noise free.

The coarser mesh with the mesh parameters Nx = 100 and Nt = 201 is used in
numerical solution of inverse problems. The noisy output data uδ

T,h , with ‖uT,h −
uδ
T,h‖L2

h(0,1)
= δ, is generated by employing the “randn” function in MATLAB, that is,

uδ
T,h(x) = uT,h(x) + γ ‖uT,h‖L2

h(0,1)
randn(N ), (3.4.37)
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where γ > 0 is the noise level. The parameter τM > 1 in the stopping condition
(3.4.12) is taken as τM = 1.1.

Example 3.4.1 The performance analysis of CG-algorithm (3.4.25): reconstruction
of a smooth function with one critical point

To generate the noise free synthetic output data uT,h the simplest concave function

F(x) = 10x(1 − x) (3.4.38)

with k(x) = 1 + x2, G(t) = exp(−t), t ∈ [0, 1], is used as an input data in the
direct (3.4.35). The function uT,h , obtained from the numerical solution of the direct
problem, is assumed to be the noise free output data. Then, using (3.4.37), the noisy
output data uδ

T,h is generated. For the value γ = 5% of the noise level, the parameter
δ > 0 is obtained as δ := ‖uT,h − uδ

T,h‖L2
h(0,1)

= 4.6 × 10−3.
The CG-algorithm is employed with and without regularization. The left Fig. 3.5

displays the reconstructions of the unknown source F(x) from the noisy data uδ
T,h ,

with the noise level γ = 5%. The function F(x), defined by (3.4.38), is plotted by
the solid line. This figure also shows the iteration numbers (n) corresponding to the
values of the parameter of regularization α > 0 are given

Table3.3 shows that the value α = 10−6 of the parameter of regularization defined
from the both conditions α � 1 and δ2/α < 1 is an optimal one. Remark that
the reconstructions obtained with the optimal value α = 10−6 of the parameter of
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Fig. 3.5 Reconstructions of the smooth function with one critical point: γ = 5% (left figure), and
the smooth function with three critical points: γ = 3% (right figure)

Table 3.3 Errors depending on the parameter of regularization: γ = 5%

α 0 1.0 × 10−4 1.0 × 10−5 1.0 × 10−6

e(n; α; δ) 4.7 × 10−3 7.3 × 10−3 4.7 × 10−3 4.7 × 10−3

E(n; α; δ) 0.2030 0.3342 0.2019 0.2028
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regularization and without regularization α = 0 are very close, as the left Fig. 3.5
shows. This illustrates the regularizing property of the CG-algorithm. �

Example 3.4.2 The performance analysis of CG-algorithm: reconstruction of a func-
tion with three critical points

In this example, the function

F(x) = 5(x − x2) + sin(3πx), x ∈ [0, 1] (3.4.39)

with the input data k(x) and G(t) from Example3.4.1 is used to generate the noise
free synthetic output data uT,h . Then, assuming the function uT,h , obtained from the
numerical solution of the direct problem, to be the noise free output data, the noisy
output data uδ

T,h is generated for the value γ = 3% of the noise level in (3.4.37). This
level corresponds, the value δ := ‖uT,h −uδ

T,h‖L2
h(0,1)

= 4.3×10−4 of the parameter
δ > 0.

Table3.4 illustrates the convergence error e(n; F; δ) and the accuracy error
E(n; F; δ), computed by formulae (3.4.5). The right Fig. 3.5 presents the recon-
structed sources for the different values of the parameter of regularization. �

Example 3.4.3 The performance analysis of CG-algorithm: mixed boundary condi-
tions in the direct problem

In both above examples we assumed in the direct problem (3.4.35) the homogeneous
Dirichlet conditions u(0, t) = u(l, t) = 0. In this example we assume that the mixed
boundary conditions u(0, t) = ux (l, t) = 0 are given in the direct problem, instead
of the homogeneous Dirichlet conditions.

The noise free synthetic output data uT,h here is generated from the following
input data

F(x) = sin(πx) + √
x; , x ∈ [0, 1],

k(x) = 1 + x2,

G(t) = exp(−t), t ∈ [0, 1],

Table 3.4 Errors depending on the parameter of regularization: γ = 3%

α 0 1.0 × 10−5 1.0 × 10−6 1.0 × 10−7

e(n; α; δ) 4.5 × 10−4 1.6 × 10−3 4.9 × 10−4 4.5 × 10−4

E(n; α; δ) 0.1443 0.4331 0.1472 0.1423

Table 3.5 Errors depending on the parameter of regularization: γ = 3%

α 0 1.0 × 10−3 1.0 × 10−4 1.0 × 10−5 1.0 × 10−6

e(n; α; δ) 8.0 × 10−3 1.5 × 10−2 8.2 × 10−3 8.0 × 10−3 8.0 × 10−3

E(n; α; δ) 0.1165 0.2754 0.1306 0.1060 0.1152
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Fig. 3.6 Influence of randomness: α = 10−6 (left figure); and the termination index n(δ) = 3
shows the beginning of the iteration from convergence to divergence (right figure) (γ = 3%)

assuming in the direct problem (3.4.35) the mixed boundary conditions u(0, t) =
ux (l, t) = 0 instead of the homogeneous Dirichlet conditions. The noisy output
data uδ

T,h is generated for the noise level γ = 5%, which corresponds to δ :=
‖uT,h − uδ

T,h‖L2
h(0,1)

= 8.0× 10−3. The convergence error and the accuracy error are
give in Table3.5 illustrates the convergence error e(n; F; δ) and the accuracy error
E(n; F; δ), computed by formulae (3.4.5).

From a computational viewpoint the change of the Dirichlet conditions in the
direct problem by the mixed boundary conditions means that the order of approxi-
mation of FE-scheme at x = l will be less than the order approximation at the interior
mesh points. Natural effect of this case is seen from the reconstructed sources in the
left Fig. 3.6 near the point x = 1. This figure also shows the degree of influence of
the randomness to the reconstructions.

The right Fig. 3.6 explains that the termination indexn(δ) = 3 shows thebeginning
of the iteration from convergence to divergence. �

The above computational results demonstrate that CG-algorithm is effective,
robust against a middle level noise on data (γ = 3÷ 5%), and provides satisfactory
reconstructions. The accuracy in the recovery of the spacewise dependent source
decreases as the noise level increases. With an appropriately chosen parameter of
regularization, the number of iterations of the CG-algorithm to reach the condition
(3.4.12) with τM = 1.1 was about 3 ÷ 5.
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Chapter 4
Inverse Problems for Hyperbolic Equations

In the first part of this chapter we study two inverse source problems related to
the second order hyperbolic equations utt − uxx = ρ(x, t)g(t) and utt − uxx =
ρ(x, t)ϕ(x) for the quarter plane R2+ = {(x, t)| x > 0, t > 0}, with Dirichlet type
measured output data f (t) := u(x, t)|x=0. The time-dependent source g(t) and
the spacewise-dependent source ϕ(x) are assumed to be unknown in these inverse
problems. Next, we study more complex problem, namely the problem of recovering
the potential q(x) in the string equation utt − uxx − q(x)u = 0 from the Neumann
type measured output data f (t) := ux (x, t)|x=0. We prove the uniqueness of the
solution and then derive the global stability estimate. In the final part of the chapter,
inverse coefficient problems for layered media is studied as an application.

4.1 Inverse Source Problems

We begin with the simplest linear inverse source problems for wave equation. In the
first case, we assume that the time dependent source term g(t) in the wave equation
utt − uxx = ρ(x, t)g(t), (x, t) ∈ R

2+, is unknown and needs to be identified from
boundary information. In the second case, based on the same boundary information,
the inverse source problem of determining the unknown spacewise dependent source
term ϕ(x) in the wave equation utt − uxx = ρ(x, t)ϕ(x) in studied. In both cases,
the reflection method [24] is used to derive solution of the inverse problems via the
solution of the Volterra equation of the second kind.

© Springer International Publishing AG 2017
A. Hasanov Hasanoğlu and V.G. Romanov, Introduction to Inverse
Problems for Differential Equations, DOI 10.1007/978-3-319-62797-7_4
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4.1.1 Recovering a Time Dependent Function

Consider the initial-boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

(
∂2

∂t2
− ∂2

∂x2

)

u(x, t) = ρ(x, t)g(t), (x, t) ∈ R
2+,

u|t=0 = 0, ut |t=0 = 0, x > 0,
ux |x=0 = 0 t > 0

(4.1.1)

for the inhomogeneous wave equation on R
2+ = {(x, t)| x > 0, t > 0}. If the right-

hand side in the wave Eq. (4.1.1) is given, then the initial-boundary value problem
(4.1.1) is a well-posed problem of mathematical physics. Let us assume that the
right-hand side is known only partially, namely, the function ρ(x, t) is known, but
the time dependent function g(t) is unknown.

Consider the following inverse source problem: find the time dependent function
g(t) for a given function ρ(x, t) and the given trace

f (t) := u(x, t)|x=0, t ≥ 0, (4.1.2)

defined on the half-axis x = 0, t ≥ 0, of the solution u(x, t) of problem (4.1.1). The
function f (t) in (4.1.2) is called Dirichlet type measured output.

The problem (4.1.1) and (4.1.2) is called an inverse source problem of determining
an unknown time dependent source in the wave equation from Dirichlet boundary
data. Accordingly, for a given admissible function g(t), the initial-boundary value
problem (4.1.1) is defined as the direct problem.

We assume that the functions ρ(x, t) and g(t) satisfy the following conditions:

ρ ∈ C(R2+), ρx ∈ C(R2+), g ∈ C[0,∞). (4.1.3)

The last condition in (4.1.3) suggests that we will look for a solution of the inverse
problem in the space C[0,∞).

Now we use the reflection method extending the functions u(x, t) and ρ(x, t)
to the domain R

2− = {(x, t)| x < 0, t > 0} as even, with respect to x , functions,
that is, u(x, t) = u(−x, t) and ρ(x, t) = ρ(−x, t), for x < 0. Then the condition
ux |x=0 = 0 is automatically satisfied. Moreover, the extended function u(x, t) solves
the Cauchy problem

⎧
⎨

⎩

(
∂2

∂t2
− ∂2

∂x2

)

u(x, t) = ρ(x, t)g(t), x ∈ R, t > 0,

u|t=0 = 0, ut |t=0 = 0, t > 0.
(4.1.4)

The unique solution of this problem is given by d’Alembert’s formula
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u(x, t) = 1

2

∫∫

�(x,t)
ρ(ξ, τ )g(τ ) dξdτ ,

where �(x, t) = {(ξ, τ ) ∈ R
2 | 0 ≤ τ ≤ t − |x − ξ|} is the characteristic triangle

with the vertex at the point (x, t). Taking into account the additional condition (4.1.2)
we get:

f (t) = 1

2

∫

�(0,t)
ρ(ξ, τ )g(τ ) dξdτ =

∫

�+(0,t)
ρ(ξ, τ )g(τ ) dξdτ , t ≥ 0,

where �+(0, t) = {(ξ, τ ) ∈ R
2 | 0 ≤ τ ≤ t, 0 ≤ ξ ≤ t − τ }. This implies the

following equation with respect to the unknown function g(t):

∫ t

0
g(τ )

∫ t−τ

0
ρ(ξ, τ ) dξdτ = f (t), t ≥ 0. (4.1.5)

Thus the inverse problem (4.1.1) and (4.1.2) is reformulated as the integral Eq. (4.1.5).
Wededuce fromEq. (4.1.5) that under conditions (4.1.3) the function f (t) satisfies

the following conditions:

f ∈ C2[0,∞), f (0) = f ′(0) = 0. (4.1.6)

Indeed, differentiating (4.1.5), we get:

f ′(t) = ∫ t
0 g(τ )ρ(t − τ , τ ) dτ ,

f ′′(t) = g(t)ρ(0, t) + ∫ t
0 g(τ )ρx (t − τ , τ ) dτ , t ≥ 0,

(4.1.7)

which means, fulfilment of conditions (4.1.6). The conditions f (0) = f ′(0) = 0
can be treated as consistency conditions for the output data f (t).

The above derived conditions (4.1.6) for the function f (t) are the necessary
conditions for solvability of the inverse problem (4.1.1) and (4.1.2). We prove that
under the additional condition

ρ(0, t) �= 0, for all t ∈ [0, T ], (4.1.8)

these conditions are also sufficient conditions for the unique solvability of the inverse
problem on the closed interval [0, T ].
Theorem 4.1.1 Let the source function ρ(x, t) satisfies conditions (4.1.3) and
(4.1.8) in DT := {(x, t) ∈ R

2+ | 0 ≤ t ≤ T − x}, T > 0. Then the inverse problem
(4.1.1) and (4.1.2) is uniquely solvable in C[0, T ] if and only if the function f (t)
satisfies conditions f (0) = f ′(0) = 0, f (t) ∈ C2[0, T ].
Proof We only need to prove that the conditions on the function f (t) allows to find
uniquely the function g(t). Divide the both sides of the second equation in (4.1.7)
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by ρ(0, t). Then we obtain the following Volterra equation of the second kind:

g(t) +
∫ t

0
K (t − τ , τ )g(τ )dτ = F(t), t ∈ [0, T ], (4.1.9)

with the kernel K (x, t) and the right hand side F(t), depending on input and output
data:

K (x, t) = ρx (x, t)/ρ(0, t), F(t) = f ′′(t)/ρ(0, t), t ∈ [0, T ]. (4.1.10)

By conditions (4.1.3) and (4.1.6) these functions are continuous, that is, K ∈ C(DT )

and F ∈ C[0, T ]. It is well known, that the Volterra equation of the second kind
with such kernel and right-hand side has the unique solution g ∈ C[0, T ] [100]. This
completes the proof of the theorem. �

Remark that Eq. (4.1.9) can easily be solved, for example, by Picard’s method of
successive approximations:

g0(t) = F(t),

gn(t) + ∫ t
0 K (t − τ , τ )gn−1(τ )dτ = F(t), n = 1, 2, . . . ,

which uniformly converges in C[0, T ].
Remark 4.1.1 As formula (4.1.10) shows, the right hand side F(t) of the integral
Eq. (4.1.9) contains the second derivative f ′′(t) of the output data. This implies that
the inverse problem (4.1.1) and (4.1.2) is ill-posed. This linear ill-posedness arises
from the fact that the measured output data f (t) have to be differentiated twice. If,
for example, f δ(t) = f (t) + δ sin(t/δ) is a noisy data, then ‖ f δ − f ‖C[0,T ] → 0,
as δ → 0, while ‖Fδ − F‖C[0,T ] → ∞.

4.1.2 Recovering a Spacewise Dependent Function

Consider the inverse source problemof identifying theunknown spacewise dependent
source ϕ(x) in

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∂2

∂t2
− ∂2

∂x2

)

u(x, t) = ρ(x, t)ϕ(x), (x, t) ∈ R
2+,

u|t=0 = 0, ut |t=0 = 0, x > 0,

ux |x=0 = 0, t > 0

(4.1.11)

from the trace of the function u(x, t) given by (4.1.2). The function ρ(x, t) is assumed
to be known.
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Let us use again the reflection method, with the same even extensions u(x, t) =
u(−x, t) and ρ(x, t) = ρ(−x, t) to the domain R

2− = {(x, t)| x < 0, t > 0}. As
noted above, the condition ux |x=0 = 0 is automatically satisfied. Then we can derive
the solution u(x, t) of the direct problem (4.1.11) via d’Alembert’s formula:

u(x, t) = 1

2

∫∫

�(x,t)
ρ(ξ, τ )ϕ(ξ) dξdτ .

With the additional condition (4.1.2) this implies:

f (t) = 1

2

∫

�(0,t)
ρ(ξ, τ )ϕ(ξ) dξdτ =

∫

�+(0,t)
ρ(ξ, τ )ϕ(ξ) dξdτ .

Hence the unknown spacewise dependent sourceϕ(x) satisfies the integral equation:

∫ t

0
ϕ(ξ)

∫ t−ξ

0
ρ(ξ, τ ) dτdξ = f (t), t ≥ 0. (4.1.12)

As in the previous problem, we conclude again that the function f (t) satisfies con-
ditions (4.1.6). Indeed, differentiating (4.1.12), one get

f ′(t) = ∫ t
0 ϕ(ξ)ρ(ξ, t − ξ) dξ,

f ′′(t) = ϕ(t)ρ(t, 0) + ∫ t
0 ϕ(τ )ρt (ξ, t − ξ) dξ, t ≥ 0.

(4.1.13)

Thus, we arrive at almost the same necessary conditions (4.1.6) for a solvability of
the inverse problem.

Now we return to the inverse problem defined by (4.1.11) and (4.1.2).
Assuming that ρ(t, 0) �= 0, for all t > 0, we can formulate the necessary and
sufficient conditions for the unique solvability of this inverse problem, similar to
Theorem 4.1.1.

Theorem 4.1.2 Let the source function ρ(x, t) satisfies the following conditions:

ρ ∈ C(DT ), ρt ∈ C(DT ), ρ(t, 0) �= 0, t ∈ [0, T ], T > 0.

Then the inverse problem defined by (4.1.11) and (4.1.2) is uniquely solvable in
C[0, T ] if and only if the function f (t) belongs to C2[0, T ] and satisfies to the
conditions f (0) = f ′(0) = 0.

Proof Dividing the both sides of the second equation in (4.1.13) by ρ(t, 0)we obtain
the Volterra equation of the second kind

ϕ(t) +
∫ t

0
K2(ξ, t − ξ)ϕ(ξ) dξ = F2(t), t ∈ [0, T ], (4.1.14)
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which has the unique solution ϕ ∈ C[0, T ], where K2(x, t) = ρt (x, t)/ρ(t, 0),
F2(t) = f ′′(t)/ρ(t, 0). Evidently, K1 ∈ C(DT ), F1 ∈ C[0, T ]. Then we conclude
that Eq. (4.1.14) has the unique solution ϕ ∈ C[0, T ]. �

Note that the solution of the Eq. (4.1.14) can be found by the same method of
successive approximations.

Remark 4.1.2 If function ρ(x, t) = 0 for 0 < t < x , then the solution to problem
(4.1.11) satisfies the equality u(x, t) = 0 for 0 < t < x . In this case Eq. (4.1.12)
takes the form

f (t) =
∫ t/2

0
ϕ(ξ)

∫ t−ξ

ξ

ρ(ξ, τ ) dτdξ, t ≥ 0. (4.1.15)

The derivatives of f (t) up to the second order are defined then by the formulae:

f ′(t) = ∫ t/2
0 ϕ(ξ)ρ(ξ, t − ξ) dξ,

f ′′(t) = 1
2ϕ

(
t
2

)
ρ

(
t
2 ,

t
2

) + ∫ t/2
0 ϕ(τ )ρt (ξ, t − ξ) dξ, t ≥ 0.

(4.1.16)

These considerations lead to the following result.

Theorem 4.1.3 Letρ(x, t) = 0 for0 < t < x ≤ T−t andρ ∈ C(D′
T ),ρt ∈ C(D′

T ),
D′

T = {(x, t) ∈ R
2 | 0 ≤ x ≤ t ≤ T − x}, for some positive T and ρ(t, t) �= 0 for

t ∈ [0, T/2]. Then the inverse problem defined by (4.1.11) and (4.1.2) is uniquely
solvable in the space C[0, T/2] if and only if function f (t) belong to C2[0, T ] and
satisfy to the consistency conditions f (0) = f ′(0) = 0.

Remark 4.1.3 The statement of the above theorems remain to hold if we replace
the wave operator in Eqs. (4.1.1) and (4.1.11) by more general operator ∂2/∂t2 −
∂2/∂x2 + q(x), where q(x), x ≥ 0, is a given continuous function for x ≥ 0.

4.2 Problem of Recovering the Potential for the String
Equation

In this section we consider the inverse problem of recovering the potential q(x),
x ∈ R+ := {x ≥ 0} in

{
Lqu :=

(
∂2

∂t2 − ∂2

∂x2 − q(x)
)
u = 0, (x, t) ∈ �,

u|x=0 = h(t), u|t=0 = 0, ut |t=0 = 0,
(4.2.1)

from the output data

f (t) := ux |x=0, t ∈ (0, T ], (4.2.2)
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given as the trace of the derivative ux of the solution u(x, t) to problem (4.2.2) at
x = 0. Here � = R+ × [0, T ]. It is assumed that

h ∈ C2[0, T ], h(0) �= 0. (4.2.3)

The problem (4.2.1) and (4.2.2) of recovering the potential in the string equation
can be treated as a simplest inverse coefficient problem for the differential operator
Lq = ∂2/∂t2 − ∂2/∂x2 − q, with Neumann data f (t). The hyperbolic problem
(4.2.1) will be defined as a direct problem.

Assuming q ∈ C[0,∞), we demonstrate that the potential q(x) can be determined
uniquely and in a stable way from the output data (4.2.2), for x ∈ [0, T/2].Moreover,
we will prove that the solution of the inverse problem exists for small T > 0, if the
function f (t) satisfies some necessary conditions.

4.2.1 Some Properties of the Direct Problem

The necessary conditions for unique solvability of the inverse problem, obtained in
the next subsection, follow from properties of the solution of the direct problem
(4.2.1). The lemma below shows that the solution u(x, t) of the hyperbolic problem
(4.2.1) can be represented as a product of a smooth function and the Heaviside step
function.

Lemma 4.2.1 Let the boundary data h(t) satisfies conditions (4.2.3) and q ∈
C[0, T/2], T > 0. Then the solution of the direct problem (4.2.1) exists in the
triangle �T := {(x, t) ∈ R

2 | 0 ≤ t ≤ T − x, x ≥ 0}. Moreover, it represented as a
product

u(x, t) = u(x, t)θ0(t − x). (4.2.4)

of a smooth function u ∈ C2(�T ), �T := {(x, t) ∈ R
2 | 0 ≤ x ≤ t ≤ T − x}, and

the Heaviside step function

θ0(t) =
{
1, t ≥ 0,
0, t < 0.

(4.2.5)

Proof The function u(x, t) is identically zero, for all 0 < t < x, t ≤ T − x , since in
this domain it solves the Cauchy problem for the homogeneous equation Lqu = 0
with homogeneous initial data. This implies the presentation (4.2.4).

We introduce now the function u0(x, t) = h(t − x)θ0(t − x), where h(t) is the
Dirichlet input data in the direct problem (4.2.1). We represent the function u(x, t)
in the form:

u(x, t) = u0(x, t) + v(x, t). (4.2.6)
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Then v(x, t) solves the problem

{
Lqv = q(x)u0(x, t), 0 < x < t ≤ T − x,

v|x=0 = 0, v|t=x = 0.
(4.2.7)

Let us explain the appearance of the condition v|t=x = 0 in (4.2.7), on the char-
acteristic line t = x . For this aim we extend the functions v(x, t), u0(x, t) to the
domain x < 0 as an odd functions with respect to x , that is, v(x, t) = −v(−x, t),
u0(x, t) = −u0(−x, t). We also extend the coefficient q(x) to the domain x < 0, as
an even function, i.e., q(x) = q(−x). Then we may use d’Alembert’s formula for
the solution of the hyperbolic problem (4.2.7) to get

v(x, t) = 1

2

∫

�(x,t)
q(x)(v(ξ, τ ) + u0(ξ, τ )) dξdτ

= 1

2

∫

♦(x,t)
q(x)(v(ξ, τ ) + u0(ξ, τ )) dξdτ , t ≥ |x |.

where ♦(x, t) = {(ξ, τ ) ∈ R
2 | |ξ| ≤ τ ≤ t − |x − ξ|}. The area of the domain

♦(x, t) tends to zero, as t → |x | + 0. Therefore v(x, |x | + 0) = 0, which implies
the fulfilment of the second condition v|t=x = 0 in (4.2.7).

Introduce now the functions

v1(x, t) := ∂v

∂t
+ ∂v

∂x
, v2(x, t) := ∂v

∂t
− ∂v

∂x
. (4.2.8)

Then the following relations hold:

Lqv = ∂v1

∂t
− ∂v1

∂x
− qv = ∂v2

∂t
+ ∂v2

∂x
− qv,

∂v

∂t
= v1 + v2

2
. (4.2.9)

Note that

v1|t=x = 0, v2|x=0 = −v1(0, t). (4.2.10)

Now we are going to obtain integral relationships between the above introduced
functions v1, v2, v. Integrating the equation Lqv = qu0 on the plane (ξ, τ ) along the
line ξ + τ = x + t , then using relations (4.2.9) and the first condition of (4.2.10) we
find:

v1(x, t) =
∫ t
(t+x)/2 q(x + t − τ )(u0(x + t − τ , τ ) + v(x + t − τ , τ )) dτ .

(4.2.11)

Similarly, integrating the equation Lqv = qu0 on the plane (ξ, τ ) along the line
ξ − τ = x − t , using (4.2.9) and the second condition of (4.2.10) we obtain
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v2(x, t) =
−v1(0, t − x) + ∫ t

t−x q(x − t + τ )(u0(x − t + τ , τ ) + v(x − t + τ , τ )) dτ .

Use (4.2.11) in the first right hand side term of this relation equation. Then we get:

v2(x, t) =
− ∫ t−x

(t−x)/2 q(t − x − τ )(u0(t − x − τ , τ ) + v(t − x − τ , τ )) dτ

+ ∫ t
t−x q(x − t + τ )(u0(x − t + τ , τ ) + v(x − t + τ , τ )) dτ .

(4.2.12)

Finally, integrate the second relation in (4.2.9) along the line ξ = x to find

v(x, t) = 1

2

∫ t

x
(v1(x, τ ) + v2(x, τ )) dτ . (4.2.13)

The Eqs. (4.2.11)–(4.2.13) form the system of integral equations with respect to
the functions v1, v2, v defined in the domain �T := {(x, t)| 0 ≤ x ≤ t ≤ T − x}.
We prove that this system has a unique solution in �T . For this aim, we represent
the functions vp(x, t), p = 1, 2 and v(x, t) in the form

vp(x, t) =
∞∑

n=1
vn
p(x, t), p = 1, 2, v(x, t) =

∞∑

n=1
vn(x, t), (4.2.14)

and look for the series solution of this system. The first terms (n = 1) of these series
are given by the formulae:

v1
1(x, t) = ∫ t

(t+x)/2 q(x + t − τ )u0(x + t − τ , τ ) dτ ,

v1
2(x, t) = − ∫ t−x

(t−x)/2 q(t − x − τ )u0(t − x − τ , τ ) dτ

+ ∫ t
t−x q(x − t + τ )u0(x − t + τ , τ ) dτ ,

v1(x, t) = 1
2

∫ t
x (v

1
1(x, τ ) + v1

2(x, τ )) dτ .

(4.2.15)

For n ≥ 2 other terms of series (4.2.14) are defined recursively as follows:

vn
1 (x, t) = ∫ t

(t+x)/2 q(x + t − τ )vn−1(x + t − τ , τ ) dτ ,

vn
2 (x, t) = − ∫ t−x

(t−x)/2 q(t − x − τ )vn−1(t − x − τ , τ ) dτ

+ ∫ t
t−x q(x − t + τ )vn−1(x − t + τ , τ ) dτ ,

vn(x, t) = 1
2

∫ t
x (v

n
1 (x, τ ) + vn

2 (x, τ )) dτ .

(4.2.16)
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Obviously vn
1 (x, t), v

n
2 (x, t), v

n(x, t) are continuous functions in�T togetherwith
the first derivatives with respect to x and t , for all n ≥ 1. We use now Mathematical
Induction to prove the uniform convergence of the series (4.2.14) in �T .

Denote by

h0 = ‖h‖C[0,T ], q0 = ‖q‖C[0,T/2]

the norms. For n = 1 we can easily derive the estimates:

|v1
1(x, t)| ≤ h0q0

(t − x)

2
,

|v1
2(x, t)| ≤ h0q0

(t + x)

2
≤ h0q0T

2
,

|v1(x, t)| ≤ h0q0T (t − x)

2
, (x, t) ∈ �T ,

by using (4.2.15).
Assume that for n = k ≥ 1 the estimates

|vk
1(x, t)| ≤ γk

2k+1T

(t − x)k

k! , |vk
2(x, t)| ≤ γk

2k+1

(t − x)k−1

(k − 1)! ,

|vk(x, t)| ≤ γk

2k+1

(t − x)k

k! , γk = h0q
k
0T

k .

(4.2.17)

hold. Using these estimates in (4.2.16), for n = k + 1 we find:

|vk+1
1 (x, t)| ≤ q0γk

2k+1k!
∫ t

(t+x)/2
(2τ − x − t)k dτ = q0γk

2k+2

(t − x)k+1

(k + 1)! ,

|vk+1
2 (x, t)| ≤ q0γk

2k+1k!
[∫ t−x

(t−x)/2
(2τ − t + x)k dτ +

∫ t

t−x
(t − x)k dτ

]

= q0γk(t − x)k

2k+1k!
(

t − x

2(k + 1)
+ x

)

≤ γk+1

2k+2

(t − x)k

k! ,

|vk+1(x, t)| ≤ γk+1

2k+2

(t − x)k+1

(k + 1)! , γk = h0q
k
0T

k .

Therefore estimates (4.2.17) hold for all n ≥ 1.
Further, due to t − x ≤ T in �T := {(x, t) ∈ R

2 | 0 ≤ x ≤ t ≤ T − x}, all series
in (4.2.14) converge uniformly and, as a result, their sums are continuous functions
in �T . Furthermore, for these functions the following estimates hold:
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|v1(x, t)| ≤ h0
2T

(

exp

(
1

2
q0T (t − x)

)

− 1

)

≤ h0
2T

(

exp

(
1

2
q0T

2

)

− 1

)

:= v10,

|v2(x, t)| ≤ h0q0T

2
exp

(
1

2
q0T (t − x)

)

≤ h0q0T

2
exp

(
1

2
q0T

2

)

:= v20,

|v(x, t)| ≤ h0
2

(

exp

(
1

2
q0T (t − x)

)

− 1

)

≤ h0
2

(

exp

(
1

2
q0T

2

)

− 1

)

:= v0,

(4.2.18)

for all (x, t) ∈ �T . Note that v ∈ C1(�T ), by the relations vt = (v1 + v2)/2 and
vx = (v1 − v2)/2. It follows from (4.2.11) and (4.2.12) that the functions v1(x, t)
and v2(x, t) are continuously differentiable with respect to x and t in �T . To verify
this, one needs to rewrite Eqs. (4.2.11) and (4.2.12) in the following form:

v1(x, t) =
∫ (t+x)/2

x
q(ξ)(u0(ξ, x + t − ξ) + v(ξ, x + t − ξ)) dξ, (4.2.19)

v2(x, t) = − ∫ (t−x)/2
0 q(ξ)(u0(ξ, t − x − ξ) + v(ξ, t − x − ξ)) dξ

+ ∫ x
0 q(ξ)(u0(ξ, t − x + ξ) + v(ξ, t − x + ξ)) dξ.

(4.2.20)

Since v1 and v2 belong to C1(�T ), the function v(x, t) is twice continuously
differentiable in �T . Then, it follows from (4.2.6) that the function u(x, t) is also
twice continuously differentiable in �T . This completes the proof of the lemma. �

4.2.2 Existence of the Local Solution to the Inverse Problem

First, we establish a relationship between the input h(t) and the output f (t) of the
inverse problem (4.2.1) and (4.2.2) and the functions v1(x, t), v2(x, t) introduced in
(4.2.8). It follows from (4.2.6) that

ux (x, t) = −h′(t − x) + vx (x, t), 0 ≤ x ≤ t,

where h′(t)means the derivative of h(t)with respect to its argument. Using formulae
(4.2.8) we find that vx (x, t) = (v1(x, t)− v2(x, t))/2. Then the additional condition
(4.2.2) leads to the relation

f (t) := ux (0, t) = −h′(t) + (v1(0, t) − v2(0, t))/2, t ∈ (0, T ]. (4.2.21)
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It follows from the Lemma 4.2.1 that f ∈ C1(0, T ]. Moreover, since v1(0, 0) =
v2(0, 0) = 0, we conclude from (4.2.21) that

f (+0) = −h′(0). (4.2.22)

Hence, the conditions (4.2.22) and f ∈ C1(0, T ] are the necessary conditions for
solvability of the inverse problem in the class of continuous functions q(x) on the
segment [0, T/2].

Let us show now that these conditions are also sufficient for a local unique solv-
ability of the inverse problem.

Theorem 4.2.1 Let f ∈ C1(0, T ], T > 0, and f (+0) = −h′(0). Then there exist
a positive number T0 ≤ T and unique function q(x) ∈ C[0, T0/2] such that the
solution to problem (4.2.1) satisfies relation (4.2.2) for t ≤ T0.

Proof We derive first the integral relation which follows from Eqs. (4.2.19), (4.2.20)
and (4.2.21). Taking into account that u0(x, t) = h(t − x) for t ≥ x ≥ 0 we obtain:

∫ t/2

0
q(ξ)(h(t − 2ξ) + v(ξ, t − ξ)) dξ = f̂ (t), (4.2.23)

where

f̂ (t) := f (t) + h′(t) ∈ C1[0, T ]. (4.2.24)

Taking now the derivative with respect to t of both sides of (4.2.23) and using
v(x, x) = 0, we arrive at the equations:

1

2
q(t/2)h(0) +

∫ t/2

0
q(ξ)(h′(t − 2ξ) + vt (ξ, t − ξ)) dξ = f̂ ′(t), t ∈ [0, T ],

or

q(x) + 1

h(0)

∫ x

0
q(ξ)

(
2h′(2x − 2ξ) + v1(ξ, 2x − ξ) + v2(ξ, 2x − ξ)

)
dξ

= F(x), x ∈ [0, T/2], (4.2.25)

with the right hand side

F(x) = 2 f̂ ′(2x)
h(0)

= 2( f ′(2x) + h′′(2x))
h(0)

. (4.2.26)

Equations (4.2.11)–(4.2.13) and (4.2.25) form a system of integral equations with
respect to unknown functions q(x) and v1(x, t), v2(x, t), v(x, t).

In order to simplify further notations, it is convenient to transform, first, the
Eqs. (4.2.11) and (4.2.12), then to rewrite the system of integral equations in terms
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of an operator equation. For this aim we use (4.2.21) and (4.2.24) to deduce that both
functions v1 and v2 are known at x = 0:

v1(0, t) = f̂ (t), v2(0, t) = − f̂ (t), t ∈ [0, T ]. (4.2.27)

Using these conditions we integrate the equation Lqv = qu0 on the plane (ξ, τ )

along the line ξ + τ = x + t from point (x, t) ∈ �T till the axis ξ = 0 to obtain the
equation

v1(x, t) = f̂ (t + x) −
∫ x

0
q(ξ) (u0(ξ, x + t − ξ) + v(ξ, x + t − ξ)) dξ. (4.2.28)

Similarly, integrating the equation Lqv = qu0 on the plane (ξ, τ ) along the line
ξ − τ = x − t from point (x, t) ∈ �T till the axis ξ = 0, we obtain the second
equation

v2(x,t) = − f̂ (t − x)

+
∫ x

0
q(ξ) (u0(ξ, t − x + ξ) + v(ξ, t − x + ξ)) dξ. (4.2.29)

Now we rewrite the system formed, respectively, by Eqs. (4.2.25), (4.2.28), (4.2.29)
and (4.2.13), in the form of the operator equation

ϕ = Aϕ,

ϕ = (ϕ1,ϕ2,ϕ3,ϕ4) := (q(x), v1(x, t), v2(x, t), v(x, t)),
(4.2.30)

where

(Aϕ)1(x) = F(x) − 1
h(0)

∫ x
0 ϕ1(ξ)(2h′(2x − 2ξ) + ϕ2(ξ, 2x − ξ)

+ϕ3(ξ, 2x − ξ)) dξ, x ∈ [0, T/2],

(Aϕ)2(x, t) = f̂ (t + x) − ∫ x
(0 ϕ1(ξ)(h(x + t − 2ξ)

+ϕ4(ξ, x + t − ξ)) dξ,

(Aϕ)3(x, t) = − f̂ (t − x) + ∫ x
0 ϕ1(ξ)(h(t − x) + ϕ4(ξ, t − x + ξ)) dξ,

(Aϕ)4(x, t) = 1
2

∫ t
x (ϕ2(x, τ ) + ϕ3(x, τ )) dτ , (x, t) ∈ �T .

(4.2.31)

Let ϕ0 = (ϕ10,ϕ20,ϕ30,ϕ40) be a vector with components

ϕ10 = F(x), ϕ20 = f̂ (t + x), ϕ30 = − f̂ (t − x), ϕ40 = 0.

Denote by C(�T ) the space of continuous vector functions, with the norm
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‖ϕ‖C(�T ) = max
k=1,4

‖ϕk‖C(�T ).

Since ϕ0 ∈ C(�T ), all vector functions defined by (4.2.31) are evidently elements
of C(�T ). We introduce in this Banach space the closed ball

BT := {ϕ ∈ C(�T ) : ‖ϕ − ϕ0‖C(�T ) ≤ ‖ϕ0‖C(�T )}. (4.2.32)

of radius ‖ϕ0‖C(�T ) > 0 centered at ϕ0 ∈ C(�T ). Evidently,

‖ϕ0‖C(�T ) ≤ a0(T ) := max(‖F‖C[0,T/2]; ‖ f̂ ‖C[0,T ]), (4.2.33)

where f̂ (t) and F(x) are defined by (4.2.24) and (4.2.26), respectively.
Hereafter we assume that F(x) and f̂ (t) are given fixed functions. Then their

norms ‖F‖C[0,T/2], ‖ f̂ ‖C[0,T ] depend on T only. Taking it into account we have used
in (4.2.33) the notation a0(T ) for the maximum of these two norms. The similar
notations for some values we shall use and later on in order indicate on a dependence
of these values on T .

Now we are going to prove that the operator A, defined by (4.2.30) and (4.2.31) is
a contraction on the Banach spaceBT , if the final time T > 0 is small enough. Recall
that an operator is named contracting one onBT , if the following two conditions hold:
(c1) Aϕ ∈ BT , for all ϕ ∈ BT ;
(c2) for all ϕ1,ϕ2 ∈ BT , the condition

‖Aϕ1 − Aϕ2‖C(�T ) ≤ ρ‖ϕ1 − ϕ2‖C(�T )

holds with some ρ ∈ (0, 1).
We verify the first condition (c1). Let ϕ ∈ BT . Then

‖ϕ‖C(�T ) ≤ ‖ϕ − ϕ0‖C(�T ) + ‖ϕ0‖C(�T ) ≤ 2‖ϕ0‖C[0,T ]) ≤ 2a0(T ),

by (4.2.33). Using this in (4.2.31) we estimate the norms |(Aϕ)k − ϕk0|, k = 1, 4
as follows:

|(Aϕ)1 − ϕ10| ≤ 1
|h(0)|

∫ x
0 |ϕ1(ξ)|(2 |h′(2x − 2ξ)|

+ |ϕ2(ξ, 2x − ξ)| + |ϕ3(ξ, 2x − ξ)|) dξ

≤ T
|h(0)| (‖h′‖C[0,T ] + 2a0(T ))‖ϕ‖ := a1(T )‖ϕ‖,

|(Aϕ)2 − ϕ20| ≤ ∫ x
0 |ϕ1(ξ)|(|h(x + t − 2ξ)| + |ϕ4(ξ, x + t − ξ))| dξ

≤ T
2 (‖h‖C[0,T ] + 2a0(T ))‖ϕ‖ := a2(T )‖ϕ‖,
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|(Aϕ)3 − ϕ30| ≤ ∫ x
0 |ϕ1(ξ)|(|h(t − x)| + |ϕ4(ξ, t − x + ξ)|) dξ

≤ T
2 (‖h‖C[0,T ] + 2a0(T ))‖ϕ‖ := a3(T )‖ϕ‖,

|(Aϕ)4 − ϕ40| ≤ 1
2

∫ t
x (|ϕ2(x, τ )| + |ϕ3(x, τ )|) dτ ≤ T ‖ϕ‖ := a4(T )‖ϕ‖.

Therefore Aϕ ∈ BT , if the following condition holds:

max
k=1,2,3,4

ak(T ) ≤ 1. (4.2.34)

We verify the second condition (c2). Let ϕk := (ϕk
1,ϕ

k
2,ϕ

k
3,ϕ

k
4) and ϕk ∈ BT ,

k = 1, 2. Then one has

|(Aϕ1 − Aϕ2)1| ≤ 1

|h(0)|
∫ x

0

(
|ϕ1

1(ξ) − ϕ2
1(ξ)|(2|h′(2x − 2ξ)|

+ |ϕ1
2(ξ, 2x − ξ)| + |ϕ1

3(ξ, 2x − ξ)|) + |ϕ2
1(ξ)|(|ϕ1

2(ξ, 2x − ξ) − ϕ2
2(ξ, 2x − ξ)|

+ |ϕ1
3(ξ, 2x − ξ) − ϕ2

3(ξ, 2x − ξ)|)
)
dξ

≤ T

|h(0)| (‖h
′‖C[0,T ] + 4a0(T ))‖ϕ1 − ϕ2‖ := b1(T )‖ϕ1 − ϕ2‖,

Similarly,

|(Aϕ1 − Aϕ2)2| ≤
∫ x

0

(
|ϕ1

1(ξ) − ϕ2
1(ξ)|(|h(x + t − 2ξ)| + |ϕ1

4(ξ, x + t − ξ)|)

+ |ϕ2
1(ξ)||ϕ1

4(ξ, x + t − ξ) − ϕ2
4(ξ, x + t − ξ)|

)
dξ

≤ T

2
(‖h‖C[0,T ] + 4a0(T ))‖ϕ1 − ϕ2‖ := b2(T )‖ϕ1 − ϕ2‖,

|(Aϕ1 − Aϕ2)3| ≤
∫ x

0

(
|ϕ1

1(ξ) − ϕ2
1(ξ)|(|h(t − x)| + |ϕ1

4(ξ, t − x − ξ)|)

+ |ϕ2
1(ξ)||ϕ1

4(ξ, t − x − ξ) − ϕ2
4(ξ, t − x − ξ)|

)
dξ

≤ T

2
(‖h‖C[0,T ] + 4a0(T ))‖ϕ1 − ϕ2‖ := b3(T )‖ϕ1 − ϕ2‖,

|(Aϕ1 − Aϕ2)4| ≤ 1

2

∫ t

x
(|ϕ1

2(x, τ ) − ϕ2
2(x, τ )| + |ϕ1

3(x, τ ) − ϕ2
3(x, τ )|) dτ

≤ T ‖ϕ1 − ϕ2‖ := b4(T )‖ϕ1 − ϕ2‖.
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Hence, ‖Aϕ1 − Aϕ2‖ ≤ ρ‖ϕ1 − ϕ2‖ with ρ < 1, if T satisfies the conditions

max
k=1,2,3,4

bk(T ) ≤ ρ < 1. (4.2.35)

Thus, if the final time T > 0 is chosen so (small) that both conditions (4.2.34)
and (4.2.35) hold, then the operator A is contracting on BT . Then, according to
Banach ContractionMapping Principle, there exists a unique solution of the operator
Eq. (4.2.30) in BT . This completes the proof of the theorem. �

4.2.3 Global Stability and Uniqueness

Now we state a stability estimate and a uniqueness theorem when the final time T is
an arbitrary fixed positive number.

Denote by Q(q0) the set of functions q ∈ C[0, T/2], satisfying the inequality
|q(x)| ≤ q0, for x ∈ [0, T/2], with the positive constant q0. Let H(h0, h1, d) be
the set of functions h(t) satisfying for some fix positive constants h0, h1 and d the
conditions:

(1) h ∈ C2[0, T ],
(2) ‖h(t)‖C[0,T ] ≤ h0, ‖h′(t)‖C[0,T ] ≤ h1,
(3) |h(0)| ≥ d > 0.

Evidently, for q ∈ Q(q0) and h ∈ H(h0, h1, d), estimates (4.2.18) remain true
in �T for the solution of the system of integral Eqs. (4.2.11)–(4.2.13).

Theorem 4.2.2 Let qk ∈ Q(q0) be a solution of the inverse problem (4.2.1), (4.2.2)
corresponding to the data hk ∈ H(h0, h1, d), fk ∈ C1[0, T ], for each k = 1, 2.
Then there exists a positive number C = C(q0, h0, h1, d, T ) such that the following
stability estimate holds:

‖q1 − q2‖C[0,T/2] ≤ C
(‖ f1 − f2‖C1[0,T ] + ‖h1 − h2‖C2[0,T ]

)
. (4.2.36)

Proof To prove this theorem we use Lemma 4.2.1. For this aim, similar to repre-
sentations (4.2.4) and (4.2.6), we represent the solution of the direct problem (4.2.1)
corresponding to qk(x) ∈ Q(q0) and hk(t) ∈ H(h0, h1, d), k = 1, 2, in the following
form:

uk(x, t) = [hk(t − x) + vk(x, t)]θ0(t − x), k = 1, 2. (4.2.37)

Then the functions vk
1 = vk

t + vk
x , vk

2 = vk
t − vk

x , vk , qk , k = 1, 2, satisfy in
�T := {(x, t)| 0 ≤ x ≤ t ≤ T − x} the integral equations:
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vk
1(x, t) = fk(t + x) + h′

k(t + x)

− ∫ x
0 qk(ξ)(hk(x + t − 2ξ) + vk(ξ, x + t − ξ)) dξ,

vk
2(x, t) = − fk(t − x) − h′

k(t − x)

+ ∫ x
0 qk(ξ)(hk(t − x) + vk(ξ, t − x + ξ)) dξ,

vk(x, t) = 1
2

∫ t
x (v

k
1(x, τ ) + vk

2(x, τ )) dτ ,

qk(x)hk(0) + ∫ x
0 qk(ξ)(2h′

k(2x − 2ξ) + vk
1(ξ, 2x − ξ)

+ vk
2(ξ, 2x − ξ)) dξ = 2( f ′

k(2x) + h′′
k (2x)).

Introduce the differences:

ṽ1 = v1
1 − v2

1, ṽ2 = v1
2 − v2

2, ṽ = v1 − v2,

q̃ = q1 − q2, f̃ = f1 − f2, h̃ = h1 − h2.

Then the above equations imply that the following relations hold in �T :

ṽ1(x, t) = f̃ (t + x) + h̃′(t + x)

− ∫ x
0

(
q̃(ξ)(h1(x + t − 2ξ) + v1(ξ, x + t − ξ))

+ q2(ξ)(h̃(x + t − 2ξ) + ṽ(ξ, x + t − ξ))
)
dξ,

ṽ2(x, t) = − f̃ (t − x) − h̃′(t − x)

+ ∫ x
0

(
q̃(ξ)(h1(t − x) + v1(ξ, t − x + ξ))

+ q2(ξ)(h̃(t − x) + ṽ(ξ, t − x + ξ))
)
dξ,

ṽ(x, t) = 1
2

∫ t
x (ṽ1(x, τ ) + ṽ2(x, τ )) dτ ,

q̃(x)h1(0) + q2(x)h̃(0) + ∫ x
0

(
q̃(ξ)(2h′

1(2x − 2ξ)

+ v1
1(ξ, 2x − ξ) + v1

2(ξ, 2x − ξ)) + q2(ξ)(2h̃′(2x − 2ξ)

+ ṽ1(ξ, 2x − ξ) + ṽ2(ξ, 2x − ξ))
)
dξ = 2( f̃ ′(2x) + h̃′′(2x)).

Let

ψ(x) = max

(

|q̃(x)|; max
x≤t≤T−x

|ṽ1(x, t)|; max
x≤t≤T−x

|ṽ2(x, t)|; max
x≤t≤T−x

|ṽ(x, t)|
)

.

Then using estimates (4.2.18) for v1
1 , v

1
2, v

1 we conclude:
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ṽ1(x, t)| ≤ ‖ f̃ ‖C[0,T ] + ‖h̃‖C1[0,T ]

+
x∫

0

(
ψ(ξ)(h0 + v0) + q0(‖h̃‖C[0,T ] + ψ(ξ))

)
dξ,

|ṽ2(x, t)| ≤ ‖ f̃ ‖C[0,T ] + ‖h̃‖C1[0,T ]

+
x∫

0

(
ψ(ξ)(h0 + v0) + q0(‖h̃‖C[0,T ] + ψ(ξ))

)
dξ,

|ṽ(x, t)| ≤ T
2 (maxx≤τ≤t |ṽ1(x, τ )| + maxx≤τ≤t |ṽ2(x, τ )|)

≤ T
(
‖ f̃ ‖C[0,T ] + ‖h̃‖C1[0,T ]

+
x∫

0

(
ψ(ξ)(h0 + v0) + q0(‖h̃‖C[0,T ] + ψ(ξ))

)
dξ

)
,

|q̃(x)| ≤ 1
d

[
q0|h̃(0)| +

x∫

0

(
ψ(ξ)(2h1 + v01 + v02)

+ q0
(
2 ‖h̃‖C1[0,T ] + ψ(ξ)

) )
dξ + 2(‖ f̃ ‖C1[0,T ] + ‖h̃‖C2[0,T ])

]
.

It follows from these estimates that ψ(x) satisfies the following integral inequality:

ψ(x) ≤ C1

(
‖ f̃ ‖C1[0,T ] + ‖h̃|C2[0,T ]

)
+ C2

∫ x

0
ψ(ξ) dξ,

for all x ∈ [0, T/2], with the constants

C1 = max (1 + q0T/2; (2 + 2q0)/d)max(1; T ),

C2 = max((h0 + v0 + q0)max(1; T ); (2h1 + v01 + v02 + q0)/d).

Using Gronwall’s inequality, one gets the estimate

|ψ(x)| ≤ C1

(
‖ f̃ ‖C1[0,T ] + ‖h̃|C2[0,T ]

)
exp(C2x), x ∈ [0, T/2] . (4.2.38)

The required stability estimate (4.2.36) follows from (4.2.38) with C = C1 exp(C2

T/2). This completes the proof. �
We derive now one of the most important application of this theorem. The result

below shows that the uniqueness, which valid for any T > 0, of the solution of
inverse problem (4.2.1) and (4.2.2) is a consequence of the above proved stability
theorem.

Theorem 4.2.3 Let the input h(t) in the direct problem (4.2.1) satisfies conditions
(4.2.3), that is, h ∈ C2[0, T ] and h(0) �= 0. Assume that q1, q2 ∈ C[0, T/2] are two
arbitrary solutions of the inverse problem (4.2.1) and (4.2.2). Then q1(x) = q2(x)
for all x ∈ [0, T/2].



4.3 Inverse Coefficient Problems for Layered Media 141

4.3 Inverse Coefficient Problems for Layered Media

Consider the following initial-boundary value problem for the acoustic equation:

{
utt − ρ−1 divx (ρ c2∇xu) = 0, (x, t) ∈ R

m+ × R,

u|t=0 = 0, ut |t=0 = 0, u|x1=0 = g(x ′, t), t ∈ R,
(4.3.1)

where x = (x1, x2 . . . , xm) := (x1, x ′) and R
m+ := {x ∈ R

m | x1 > 0}.
The coefficients c = c(x) > 0 and ρ = ρ(x) > 0 in the acoustic Eq. (4.3.1) are

the sound speed and the density of a medium, correspondingly. We assume here that
the medium is layered, that is, the coefficients depend only on the variable x1 ∈ R:
c = c(x1) and ρ = ρ(x1).

For a given admissible coefficients c = c(x1) and ρ = ρ(x1) the problem of
finding a function u(x, t) satisfying initial-boundary value problem (4.3.1), which is
defined as a direct problem, is a well-posed problem.

The inverse coefficient problem here consists of the determination of the unknown
coefficients c(x1) and ρ(x1) based on the following information on the solution to
problem (4.3.1) on the hyperplane x1 = 0 for all x ′ ∈ R

m−1 and t ∈ (0, T ], T > 0:

F(x ′, t) := ρ(0) c2(0)
∂u

∂x1

∣
∣
∣
x1=0

, x ′ ∈ R
m−1, t ∈ (0, T ]. (4.3.2)

Physically, the condition (4.3.2) means that the acoustic pressure is given at x1 = 0.
Let us show that if the acoustic rigidity ρ(x1)c(x1) is known at x1 = 0, i.e. if

ρ(0)c(0) is given, then the inverse problem defined by (4.3.1) and (4.3.2) can be
reduced to the previously considered one.

Indeed, consider the Fourier transform ϕ̃(λ′) of a function ϕ(x ′), x ′ ∈ R
m−1, with

respect to x ′, i.e.,

ϕ̃(λ′) =
∫

Rm−1
ϕ(x ′) exp{i(x ′ · λ′)} dx ′.

Here λ′ := (λ2, . . . ,λm) is the parameter of the transform and the symbol (x ′ · λ′)
means the scalar product of vectors x ′ and λ′. Applying the Fourier transform to the
direct problem (4.3.1) as well as to the additional condition (4.3.2), we arrive at the
following transformed inverse problem:

{
ũt t − ρ−1(ρ c2ũx1)x1 + c2|λ′|2ũ = 0, (x1, t) ∈ R+ × R,

ũ|t=0 = 0, ũt |t<0 = 0, ũ|x1=0 = g̃(λ′, t), (4.3.3)

ρ(0)c2(0)
∂ũ

∂x1

∣
∣
∣
x1=0

= F̃(λ′, t), t ∈ (0, T ], (4.3.4)

where ũ and F̃ are the Fourier images of the functions u and F , respectively.
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Now we use the transformation

z =
∫ x1

0

dξ

c(ξ)
(4.3.5)

to introduce the new independent variable z, instead of x1. Then x1 = h(z) is a
monotone increasing function of z. Denote by

c(h(z)) := ĉ(z), ρ((h(z)) := ρ̂(z), S(z) :=
√

[ρ(0)c(0)]/ρ̂(z)ĉ(z)

and introduce the new function v(z, t,λ′):

S(z)v(z, t,λ′) := ũ(h(z),λ′, t).

Notice that

ρ c2ũx1 = ρ̂(z) ĉ(z)ũz(h(z), t)|z=z(x1),

ρ−1(ρ c2ũx1)x1 = (ρ̂(z) ĉ(z))−1(ρ̂(z) ĉ(z)ũz)z|z=z(x1).

In terms of the function v(z, t,λ′) the transformed inverse problem (4.3.3) and (4.3.4)
becomes

{
vt t − vzz − q(z,λ′)v = 0 (z, t) ∈ R+ × R,

v|t=0 = 0, vt |t=0 = 0, v|z=0 = g̃(λ′, t), (4.3.6)

ρ(0)c(0) (vz + Hv)z=0 = F̃(λ′, t), t ∈ (0, T ]. (4.3.7)

where q(z,λ′) := q0(z) + |λ′|2q1(z), H := S′(0), and

q0(z) = (ln S(z))
′′ − [

(ln S(z))′
]2

, q1(z) = −ĉ2(z).

By the boundary condition v|z=0 = g̃(λ′, t) in (4.3.6), the trace v|z=0 is a known
function. Using this in the additional condition (4.3.7) we transform it as follows:

vz|z=0 = F̂(λ′, t), t ∈ (0, T ], (4.3.8)

where F̂(λ′, t) = F̃(λ′, t)/(ρ(0)c(0)) − H g̃(λ′, t).
Let us fix the parameter λ′ and assume that

c(x1) ∈ C2[0,∞), ρ(x1) ∈ C2[0,∞), g̃(λ′, t) ∈ C2[0,∞)), g̃(λ′, 0) �= 0.

Then q(z,λ′) ∈ C[0,∞) and we obtain the inverse problem which is very close
to the inverse problem of recovering the potential q(x), considered in Sect. 4.2. It
differs from the previous one only by the presence of unknown parameter H here.
But this problem can be overcome using the property
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F̂(λ′,+0) = −g̃′(λ′, 0). (4.3.9)

of the function F̂(λ′, t) ∈ C1[0,∞). Here g̃′ means the derivative of g̃ with respect
to t . Relation (4.3.9) is the complete analogue of formula (4.2.22). From formula
(4.3.9) one finds

H = F̃(λ′,+0) + ρ(0)c(0)g̃′(λ′, 0)
ρ(0)c(0)g̃(λ′, 0)

.

Hence, H becomes known. This implies that the transformed inverse problem,
defined by (4.3.6) and (4.3.8), is quite similar to the inverse problem (4.2.1) and
(4.2.2), under the assumption that the parameter λ′ is fixed. Therefore for each fixed
λ′ function q(λ′, z) can be determined uniquely and by a stable way, on the interval
z ∈ [0, T/2], by the given function F̂(λ′, t), t ∈ [0, T ].

Further, then taking twovalues ofλ′ with different |λ′|, one canfind the coefficients
q0(z) and q1(z). The second coefficient determines the speed of the sound as function
of z, i.e., ĉ(z) and relation (4.3.5) allows to find the dependence between x1 and z:

x1 = h(z) :=
∫ z

0
ĉ(z′) dz′, 0 ≤ z ≤ T/2.

Thus, function c(x1) becomes known on the interval [0, h(T/2)]. Coefficient q0(z)
determines the function S(z). Indeed, ln S(z) satisfies to the ordinary differential
equation

(ln S(z))
′′ − [

(ln S(z))′
]2 = q0(z), 0 ≤ z ≤ T/2,

and the given initial Cauchy data: S(0) = 1, S′(0) = H . Therefore S(z) is uniquely
defined by q0(z) for 0 ≤ z ≤ T/2. Using S(z), one finds the density ρ̂(z), since
ρ(0)c(0) is known (by the assumption made above) and then ρ(x1) for 0 ≤ x1 ≤
h(T/2).

Note that ρ(0)c(0) can not be found in this problem because if one assumes that
the medium is homogeneous, i.e. if ρ and c are constants, then ρ vanishes in relation
(4.3.1).

Thus, for layered media some inverse problems with an output data given on the
whole boundary of the half-space can be reduced to inverse problem for the string on
the half-axis. The presence of the Fourier transform parameter allows to find several
unknown coefficients or some combinations of them.

Remark 4.3.1 In the case when all components and the medium parameters depend
on one space variable only, the same problem withm = 3 occurs in one-dimensional
inverse problem related to elasticity equations.

For results related to multidimensional inverse problems for hyperbolic equations
and some methods of solving them we refer [10–12, 14, 45, 46, 55, 59, 60, 85, 86].



Chapter 5
One-Dimensional Inverse Problems
for Electrodynamic Equations

5.1 Formulation of Inverse Electrodynamic Problems

In this chapter we consider some inverse problems for the electrodynamics Maxwell
equations

∇ × H = εEt + σE + j, ∇ × E = −μHt . (5.1.1)

Here H = (H1, H2, H3) and E = (E1, E2, E3) are vectors of electric and magnetic
strengths, ε > 0, μ > 0 and σ are the permittivity, permeability and conductivity
coefficients, respectively, which define electro-dynamical parameters of a medium.
The function j = j (x, t) is the external current source which generates the electro-
magnetic waves. We consider the simplest physical model of a medium, assuming
that the space R

3 is divided in the two half-spaces R
3− =: {x ∈ R

3| x3 < 0} and
R

3+ =: {x ∈ R
3| x3 > 0}. Namely, in R

3− the electro-dynamical parameters of the
medium are assumed to be known and are constants ε = ε− > 0, μ = μ− > 0 and
σ = 0.

The inverse coefficient problem consists in the determination of unknown para-
meters inR3+, as functions of x , from observations of the electromagnetic field on the
interface S =: {x ∈ R

3| x3 = 0}. Generally speaking, the interface S is the discon-
tinuity boundary for these parameters. For this reason we need to introduce special
notations for limiting values of the parameters ε, μ on S taking from R

3+, namely,
denote by ε+ = ε|x3=0+ , μ+ = μ|x3=0+ . Assume that the electromagnetic field van-
ishes until the moment t = 0, i.e.,

(E, H)t<0 ≡ 0, j |t<0 ≡ 0, (5.1.2)

and it is generated by a source j = j0(x1, x2, t)δ(x3), j0 = ( j01 , j02 , 0), located at
the interface S and j0 = 0 for t < 0. This assumption implies that on the interface
S the following transmission conditions hold:
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145



146 5 One-Dimensional Inverse Problems for Electrodynamic Equations

[H1]S = j2(x1, x2, t), [H2]S = − j1(x1, x2, t). (5.1.3)

Here [Hk]S = H+
k − H−

k and H+
k = Hk |x3=+0, H

−
k = Hk |x3=−0. These notationswill

also be used for other functions below. The tangential electric components of the
vector E are continuous across S, i.e.,

[Ek]S = 0, k = 1, 2. (5.1.4)

One needs to add to Eq. (5.1.1) also the usual scalar equation of the electrodynamics

∇ · (μH) = 0.

However, this equation is a simple consequence of relations (5.1.1) and (5.1.2),
which implies that the scalar equation does not play an independent role. There-
fore, Eqs. (5.1.1), (5.1.2), (5.1.3) and (5.1.4) completely define the well-posed direct
problem.

Let us formulate now the inverse problem in the time domain. For the determi-
nation of the unknown parameters ε, μ and σ in R

3+ the following information is
usually used. The tangential components of E are given on S, i.e.,

Ek |S = fk(x1, x2, t), t > 0, k = 1, 2. (5.1.5)

Remark that in applications instead of Ek |S can be given H+
k |S , k = 1, 2.

The inverse coefficient problem here is to find the unknown parameters ε, μ and
σ such that the solution to the direct problem (5.1.1), (5.1.2), (5.1.3) and (5.1.4)
satisfies the additional conditions (5.1.5).

5.2 The Direct Problem: Existence and Uniqueness
of a Solution

Weconsider the above defined inverse problem assuming that ε,μ andσ are functions
of one variable x3 only and jk , k = 1, 2, do not depend on variables x1, x2, i.-
e., jk = jk(t). Then the solution to the direct problem (5.1.1), (5.1.2), (5.1.3) and
(5.1.4) does not depend on x1 and x2 and the problem can be decomposed into two
independent sub problems for the functions (E2, H1, H3) and (E1, E3, H2). Consider
the subsystem for (E2, H1, H3). It has the form

∂H1

∂x3
= ε

∂E2

∂t
+ σE2,

∂E2

∂x3
= μ

∂H1

∂t
,

∂ H̃3

∂t
= 0. (5.2.1)

For this subsystem we have the zero initial data
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(E2, H1, H3)t<0 ≡ 0, (5.2.2)

and the following condition on the interface

[H1]x3=0 = j2(t) := j (t), [E2]x3=0 = 0, t ≥ 0. (5.2.3)

Hereafter we suppose that j (0) �= 0. It follows from (5.2.1) and (5.2.2) that H3 ≡ 0.
The information for determining the coefficients is of the form

E2|x3=0 = f2(t) := f (t), t > 0. (5.2.4)

Eliminating H1, one can find the following second-order equation for E2:

ε
∂2E2

∂t2
+ σ

∂E2

∂t
− ∂

∂x3

( 1

μ

∂E2

∂x3

)
= 0 (5.2.5)

with the initial zero data and the following conditions on the interface

[E2]x3=0 = 0,
[ 1
μ

∂E2

∂x3

]
x3=0

= d j (t)

dt
. (5.2.6)

Thus, the inverse problem can be reduced to the problem for Eq. (5.2.5) with zero
initial Cauchy data, the conditions (5.2.6) at the interface x3 = 0 and the additional
condition (5.2.4). One possible and standard way is use of these relations for analysis
of direct and inverse problems. However, we prefer here another way which is based
on use of the first order Eq. (5.2.1).

Let us transform Eq. (5.2.1) to a more convenient form. For this aim, introduce
the new independent variable

z =
x3∫

0

√
ε(ξ)μ(ξ) dξ, (5.2.7)

which corresponds the travel time of a electromagnetic signal propagating with the
speed c = 1/

√
εμ along the axis x3 from the origin to point x3. Let z = z(x3) and

x3 = h(z) be the adjoint inverse function x3 ≡ h(z(x3)). Denote by

E2|x3=h(z) = Ê2(z, t), H1|x3=h(z) = Ĥ1(z, t),

ε(h(z)) = ε̂(z),μ(h(z)) = μ̂(z),σ(h(z)) = σ̂(z). (5.2.8)

Eq. (5.2.7) implies that

1 = h′(z)
√

ε̂(z)μ̂(z). (5.2.9)
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Hence,

h(z) =
z∫

0

dζ√
ε̂(ζ)μ̂(ζ)

. (5.2.10)

This means that given ε̂(z), μ̂(z) one can find the correspondence between x3 and z
of the form x3 = h(z). Eq. (5.2.1) in the new notations take the form

√
ε̂μ̂

∂ Ĥ1

∂z
= ε̂

∂ Ê2

∂t
+ σ̂ Ê2,

√
ε̂μ̂

∂ Ê2

∂z
= μ̂

∂ Ĥ1

∂t
, (5.2.11)

Introduce the new functions, called Riemannian invariants, by the formulae

√
ε̂ Ê2 +

√
μ̂ Ĥ1 = u1,

√
ε̂ Ê2 −

√
μ̂ Ĥ1 = u2. (5.2.12)

Then

Ê2 = u1 + u2

2
√

ε̂
, Ĥ1 = u1 − u2

2
√

μ̂
. (5.2.13)

Let us rewrite the Eq. (5.2.11) for the functions u1, u2. Assume that ε(x3),μ(x3) are
C1[0,∞) functions and σ(x3) ∈ C[0,∞). Dividing the first Eq. (5.2.11) by

√
ε̂ and

the second one by
√

μ̂, we obtain

∂(
√

μ̂Ĥ1)

∂z
− μ̂′

2μ̂
(
√

μ̂Ĥ1) = ∂(
√

ε̂Ê2)

∂t
+ σ̂

ε̂
(
√

ε̂ Ê2),

∂(
√

ε̂Ê2)

∂z
− ε̂′

2ε̂
(
√

ε̂Ê2) = ∂(
√

μ̂Ĥ1)

∂t
,

Now adding these equations and then subtracting the second equation from the first
one and using (5.2.13), we transform the equations into the following ones:

( ∂

∂t
− ∂

∂z

)
u1 + 1

4

( ε̂′

ε̂
+ μ̂′

μ̂
+ 2σ̂

ε̂

)
u1 + 1

4

( ε̂′

ε̂
− μ̂′

μ̂
+ 2σ̂

ε̂

)
u2 = 0,

( ∂

∂t
+ ∂

∂z

)
u2 + 1

4

( μ̂′

μ̂
− ε̂′

ε̂
+ 2σ̂

ε̂

)
u1 + 1

4

(2σ̂
ε̂

− ε̂′

ε̂
− μ̂′

μ̂

)
u2 = 0.

We represent these equations together with initial data as follows

(
I2

∂

∂t
+ K

∂

∂z
+ A

)
U = 0, U |t<0 ≡ 0, (5.2.14)

where the matrices I2, K , A and the vector-column U are given by the formulae
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U =
(
u1
u2

)
, I2 =

(
1 0
0 1

)
, K =

(−1 0
0 1

)
,

A =
(
q1 + q3 q2 + q3
q3 − q2 q3 − q1

)
,

(5.2.15)

and the coefficients q1, q2, q3 are determined via ε̂, μ̂, σ̂ as follows:

q1(z) = 1

4

(
ε̂′(z)
ε̂(z)

+ μ̂′(z)
μ̂(z)

)
, q2(z) = 1

4

(
ε̂′(z)
ε̂(z)

− μ̂′(z)
μ̂(z)

)
,

q3(z) = σ̂(z)

2 ε̂(z)
.

(5.2.16)

Then the interface (transmission) conditions take the form

[u1 − u2√
μ̂

]
z=0

= 2 j (t),
[u1 + u2√

ε̂

]
z=0

= 0, t > 0,

or

u+
1 − u+

2√
μ̂+ − u−

1 − u−
2√

μ̂− = 2 j (t),
u+
1 + u+

2√
ε̂+ − u−

1 + u−
2√

ε̂− = 0, t > 0.

By the reasons that will be clearly below, we represent these conditions in the form

u−
1 = r11u

+
1 + r12u

−
2 − r11

√
μ+ j (t),

u+
2 = −r12u

+
1 + r22u

−
2 − r22

√
μ− j (t), t > 0, (5.2.17)

where ri j given by the formulae

r11 = 2
√

ε−μ−
√

ε−μ+ + √
ε+μ− , r12 =

√
ε−μ+ − √

ε+μ−
√

ε−μ+ + √
ε+μ− ,

r22 = 2
√

ε+μ+
√

ε−μ+ + √
ε+μ− .

(5.2.18)

The information for the inverse problem is now given by the formula

u+
1 + u+

2 = 2
√

ε+ f (t), t > 0. (5.2.19)

Consider the direct problem defined by (5.2.14), (5.2.15), (5.2.16) and (5.2.17).
Since the initial data are zero, one has

u1(z, t) = u2(z, t) ≡ 0, 0 < t < |z|. (5.2.20)
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For arbitrary T > 0 introduce the notations �−=
T {(z, t)| 0 < −z ≤ t ≤ T + z} and

�+
T = {(z, t)| 0 < z ≤ t ≤ T − z}. In the domain �−

T we have Eq. (5.2.14) with the
matrix A = 0 and the boundary conditions (5.2.17). The second Eq. (5.2.14) has the
form

∂u2
∂t

+ ∂u2
∂z

= 0, u2|t=0 = 0, z < 0.

This implies that u2(z, t) ≡ 0 for all (z, t) ∈ �−
T . Hence u

−
2 = 0. Then the second

boundary condition (5.2.17) takes the form

u+
2 = −r12u

+
1 − r22

√
μ− j (t), t > 0. (5.2.21)

It means that we can consider the direct problem in the domain�+
T with the boundary

condition (5.2.21) and find u1(z, t) and u2(z, t) and then calculate u−
1 (0, t) and

u1(z, t) in �−
T using the Eq. (5.2.14) and the first boundary condition (5.2.17). The

latter is given by the formula

u1(z, t) = r11u
+
1 (0, t + z) − r11

√
μ+ j (t + z), (z, t) ∈ �−

T . (5.2.22)

Write down integral equations for u1 and u2 in the domain �+
T . Integrating the

first component of the Eq. (5.2.14) on the plane (ζ, τ ) along the characteristic line
ζ + τ = z + t from the point (z + t)/2, z + t)/2) till the point (z, t) and using that
u1(z + t)/2, z + t)/2) = 0, we obtain

u1(z, t) +
∫ t

(z+t)/2
(A(z + t − τ )U (z + t − τ , τ ))1 dτ = 0,

(z, t) ∈ �+
T . (5.2.23)

Now we can rewrite the condition (5.2.21) in the form

u+
2 (0, t) = r12

∫ t

t/2
(A(t − τ )U (t − τ , τ ))1 dτ − r22

√
μ− j (t). (5.2.24)

Integrating the second component of (5.2.14) along the characteristic line ζ − τ =
z − t from the point (0, t − z) till the point (z, t) and using the boundary condition
(5.2.24), we get

u2(z, t) + ∫ t
t−z(A(z − t + τ )U (z − t + τ , τ ))2 dτ

−r12
∫ t−z
(t−z)/2(A(t − z − τ )U (t − z − τ , τ ))1 dτ

+r22
√

μ− j (t − z) = 0, (z, t) ∈ �+
T .

(5.2.25)
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Relations (5.2.23) and (5.2.25) form the closed system of integral equations in
domain �+

T . The properties of the solution to this system are given by the following
existence and uniqueness theorem.

Theorem 5.2.1 Let ε̂(z) ∈ C1[0, T/2], μ̂ ∈ C1[0, T/2], σ̂(z) ∈ C[0, T/2] and
j (t) ∈ C1[0, T ], T > 0. Assume, in addition, that the following bounds hold:

maxz∈(0,T/2]
( 1

ε̂(z)
,

1

μ̂(z)

)
≤ q0,

r22
√

μ− ‖ j‖C(0,T ] ≤ j0,
max(‖ε̂′‖C(0,T/2], ‖μ̂′‖C(0,T/2], ‖σ̂‖C(0,T/2]) ≤ q01,

with some constants q0, q01 and j0. Then there exist a unique continuously differen-
tiable solution to Eqs. (5.2.23) and (5.2.25) in the closed domain�+

T and this solution
satisfies the conditions

u1(z, z) = 0,

u2(z, z) = −r22
√

μ− j (0) exp
( ∫ z

0 (q1(ζ) − q3(ζ)) dζ
)
, z ∈ [0, T/2],

max(‖u1‖C(�+
T )

, ‖u2‖C(�+
T )

) ≤ C j0,
(5.2.26)

where C = C(q0, q01, T ).

Proof To prove the existence of a continuous solution in �+
T one can use the method

of successive approximation. For this goal, functions u1 and u2 are represented in
the form of series

uk(z, t) =
∞∑
n=0

unk (z, t), k = 1, 2, (5.2.27)

where un1 and un2 are defined by the formulae

u01(z, t) = 0, u02(z, t) = −r22
√

μ− j (t − z), Un = (un1, u
n
2)

T ,

un1(z, t) = − ∫ t
(z+t)/2(A(z + t − τ )Un−1(z + t − τ , τ ))1 dτ , n ≥ 1,

un2(z, t) = − ∫ t
t−z(A(z + t − τ )Un−1(z + t − τ , τ ))2 dτ

+r12
∫ t−z
(t−z)/2(A(t − z − τ )Un−1(t − z − τ , τ ))1 dτ , n ≥ 1.

Functions un1(z, t), u
n
2(z, t) are continuous in �+

T . Introduce

vn(t) =
⎧⎨
⎩
max
k=1,2

max
0≤z≤t

|unk (z, t)|, t ∈ [0, T/2],
max
k=1,2

max
0≤z≤T−t

|unk (z, t)|, t ∈ [T/2, T ],

for n = 0, 1, 2, . . .. Note that |r12| < 1. Then one has
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v0(t) ≤ j0,
|un1(z, t)| ≤ 2q0q01

∫ t
(z+t)/2 vn−1(τ ) dτ ≤ 2q0q1

∫ t
0 vn−1(τ ) dτ ,

|un2(z, t)| ≤ 2q0q01
( ∫ t

t−z vn−1(τ ) dτ + ∫ t−z
(t−z)/2 vn−1(τ ) dτ

)

≤ 2q0q01
∫ t
0 vn−1(τ ) dτ , n ≥ 1.

Hence,

vn(t) ≤ 2q0q01

∫ t

0
vn−1(τ ) dτ , t ∈ [0, T ], n ≥ 1. (5.2.28)

From (5.2.28) we deduce the estimates

vn(t) ≤ j0(2q0q01)
n t

n

n! ≤ j0(2q0q01)
n T

n

n! , t ∈ [0, T ], n = 0, 1, 2, . . . . (5.2.29)

Therefore the series (5.2.27) uniformly convergence in �+
T and their sums are con-

tinuous functions in �+
T . This means that there exists the solution to the integral

Eqs. (5.2.23) and (5.2.25) and the solution satisfies the inequalities

|uk(z, t)| ≤ j0

∞∑
n=0

(2q0q01)
n T

n

n! ≤ j0 exp(2q0q01T ), k = 1, 2, (5.2.30)

for all (z, t) ∈ �+
T . Moreover, substituting in (5.2.23) and (5.2.25) t = z, we obtain

u1(z, z) = 0 and the integral relation for the function ψ(z) = u2(z, z) in the form

ψ(z) +
∫ z

0
(q3(ζ) − q1(ζ))ψ(ζ) dζ = −r22

√
μ− j (0).

The latter equation is equivalent to the Cauchy problem for the ordinary differential
equation

ψ′(z) + (q3(z) − q1(z))ψ(z) = 0, ψ(0) = −r22
√

μ− j (0).

The solution of this problem is given by the formula

ψ(z) = ψ(0) exp

(∫ z

0
(q1(ζ) − q3(ζ)) dζ

)
,

which coincides with the second formula (5.2.26).
To prove the uniqueness of the found solution, we suppose that there exist two

solutions of the integral Eqs. (5.2.23) and (5.2.25), namely, u1, u2 and ū1, ū2. Then
their difference ũ1 = u1 − ū1, ũ2 = u2 − ū2 satisfies the following relations for all
(z, t) ∈ �+

T :
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ũ1(z, t) + ∫ t
(z+t)/2(A(z + t − τ )Ũ (z + t − τ , τ ))1 dτ = 0,

ũ2(z, t) + ∫ t
t−z(A(z + t − τ )Ũ (z + t − τ , τ ))2 dτ

−r12
∫ t−z
(t−z)/2(A(t − z − τ )Ũ (t − z − τ , τ ))1 dτ = 0,

(5.2.31)

where Ũ := (ũ1, ũ2)T . Let now

v(t) =
⎧⎨
⎩
max
k=1,2

max
0≤z≤t

|ũk(z, t)|, t ∈ [0, T/2],
max
k=1,2

max
0≤z≤T−t

|ũk(z, t)|, t ∈ [T/2, T ].

Then we get

|ũ1(z, t)| ≤ 2q0q01
∫ t
0 v(τ ) dτ ,

|ũ2(z, t)| ≤ 2q0q01
∫ t
0 v(τ ) dτ , (z, t) ∈ �+

T .

Hence,

v(t) ≤ 2q0q01

∫ t

0
v(τ ) dτ , t ∈ [0, T ]. (5.2.32)

Inequality (5.2.32) has only trivial solution v(t) ≡ 0. Therefore u1(z, t) = ū1(z, t)
and u2(z, t) = ū2(z, t), i.e., the solution to (5.2.23), (5.2.24) and (5.2.25) is unique.

Now we need prove that the solution is continuously differentiable in �+
T . If

the coefficients satisfy the conditions ε̂(z) ∈ C2[0, T/2], μ̂ ∈ C2[0, T/2], σ̂(z) ∈
C1[0, T/2], then one can directly prove this assertion taking derivatives of integral
relations (5.2.23) and (5.2.25) with respect to z and t . In order to avoid the additional
differentiation of the coefficients, we need first to rewrite these relations changing
the variable τ under the integrands on ζ. Making this, we get

u1(z, t) − ∫ z
(z+t)/2(A(ζ)U (ζ, z + t − ζ))1 dζ = 0,

u2(z, t) + ∫ z
0 (A(ζ)U (ζ, t − z + ζ))2 dζ

−r12
∫ (t−z)/2
0 (A(ζ)U (ζ, t − z − ζ))1 dζ

+r22
√

μ− j (t − z) = 0, (z, t) ∈ �+
T .

(5.2.33)

Then we differentiate Eq. (5.2.33) to obtain integral relations for partial derivatives
u̇1, u̇2 with respect to t of u1 and u2. These equations are as follows:

u̇1(z, t) − ∫ z
(z+t)/2(A(ζ)U̇ (ζ, z + t − ζ))1 dζ

+1

2
(A((z + t)/2)U ((z + t)/2, (z + t)/2))1 = 0,

u̇2(z, t) + ∫ z
0 (A(ζ)U̇ (ζ, t − z + ζ))2 dζ

−r12
∫ (t−z)/2
0 (A(ζ)U̇ (ζ, t − z − ζ))1 dζ

−r12
2

(A((t − z)/2)U ((t − z)/2, (t − z)/2))1

+r22
√

μ− j ′(t − z) = 0, (z, t) ∈ �+
T ,

(5.2.34)
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where U̇ is the vector-column with components u̇1, u̇2. Now one needs again to
change variable in the integrands returning back to τ . In the result the equations take
the form

u̇1(z, t) + ∫ t
(z+t)/2(A(z + t − τ )U̇ (z + t − τ , τ ))1 dτ

+1

2
(A((z + t)/2)U ((z + t)/2, (z + t)/2))1 = 0,

u̇2(z, t) + ∫ t
t−z(A(z − t + τ )U̇ (z − t + τ , τ ))2 dτ

−r12
∫ t−z
(t−z)/2(A((t − z − τ )U̇ ((t − z − τ , τ ))1 dτ

−r12
2

(A((t − z)/2)U ((t − z)/2, (t − z)/2))1

+r22
√

μ− j ′(t − z) = 0, (z, t) ∈ �+
T .

(5.2.35)

In these equations the function U (z, z) is known. The Eq. (5.2.35) quite similar to
the Eqs. (5.2.23) and (5.2.25). Therefore to prove the existence and uniqueness of a
continuous solution in �+

T of these equations the previous methods can be used. We
leave the proof of these assertins as an exercise for the reader.

Since the derivatives u̇1(z, t), u̇2(z, t) exist and are continuous in�+
T , then directly

for the differential Eq. (5.2.14) follows an existence and continuous dependence of
the derivatives of u1(z, t), u2(z, t) with respect to z in the same domain. �

The following theorem is a consequence of Theorem 5.2.1.

Theorem 5.2.2 Let conditions of Theorem 3.2.1 hold. Assume, in addition, that
additional condition j (0) �= 0 holds. Then the function f (t) in (5.2.19) belongs to
the functional space C1[0, T ] and satisfy the condition

−
√

μ−
√

ε− <
f (0+)

j (0)
< 0. (5.2.36)

Proof One needs prove only inequality (5.2.36). It follows directly from Eq. (2.2.25)
that

f (0+) = −r22
√

μ−

2
√

ε+ j (0). (5.2.37)

Then one finds
f (0+)

j (0)
= −r22

√
μ−

2
√

ε+ < 0.

Using the formula (5.2.18) for r22, one obtains the estimate

r22

2
√

ε+ =
√

μ+
√

ε−μ+ + √
ε+μ− <

1√
ε− .

This implies the inequality (5.2.36).

http://dx.doi.org/10.1007/978-3-319-62797-7_3
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5.3 One-Dimensional Inverse Problems

Consider the inverse problem.We assume that h(t) ∈ C1[0, T ], j (0) �= 0, and f (t) ∈
C1[0, T ] is a given function which satisfies to the condition (5.2.36). Since only the
f (t) function is a given data, i.e. information, one can find at most one unknown
parameters ε, μ or σ. In this context we consider two typical inverse problems.

5.3.1 Problem of Finding a Permittivity Coefficient

In this case we should accept that μ and σ are given. We assume for simplicity that
μ(x3) = μ+ > 0 and σ(x3) = 0 for x3 > 0. In this case

q1(z) = q2(z) = ε̂′(z)
4ε̂(z)

:= q(z), q3(z) = 0. (5.3.1)

Using relations (5.2.36) and (5.2.18) one can find ε+. Elementary calculations lead
to the formula

ε+ = μ+
( j (0)

f (0+)
+

√
ε−

√
μ−

)2
. (5.3.2)

Note that the inequality (5.2.36) guaranties that ε+ is positive. Because ε+ has found,
the value r12 and r22 become known.

In the inverse problem both functions h(t) and f (t) are given. Therefore one can
calculate u+

1 and u+
2 using the conditions (5.2.17) and (5.2.19) (recall that u−

2 = 0 in
(5.2.17)). Indeed, then the equations hold

u+
2 = −r12u

+
1 − r22

√
μ− j (t),

u+
1 + u+

2 = 2
√

ε+ f (t), t > 0.

Solving these equations we deduce:

u+
1 = 1

1 − r12

(
r22

√
μ− j (t) + 2

√
ε+ f (t)

)
:= F1(t),

u+
2 = − 1

1 − r12

(
r22

√
μ− j (t) + 2r12

√
ε+ f (t)

)
:= F2(t).

(5.3.3)

Note that, according (5.2.18),

1 − r12 = 2
√

ε+μ−
√

ε−μ+ + √
ε+μ− > 0.
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Because u+
1 and u+

2 are known, one can consider Eq. (5.2.14) in the domain�+
T only.

These equations have the form

⎧
⎪⎨
⎪⎩

∂u1
∂t

− ∂u1
∂z

+ q(z)(u1 + u2) = 0,

∂u2
∂t

+ ∂u2
∂z

− q(z)(u1 + u2) = 0, (z, t) ∈ �+
T .

(5.3.4)

Moreover, the following conditions hold

u1(z, z) = 0, u2(z, z) = −r22
√

μ− j (0) exp

(∫ z

0
q(ζ) dζ

)
(5.3.5)

for z ∈ [0, T/2]. The relations (5.3.3), (5.3.4) and (5.3.5) form the complete systemof
equations for the inverse problem.Deduce integral equations for this problem.Atfirst,
integrating Eq. (5.3.4) along the characteristic lines ζ + τ = z + t and ζ − τ = z − t
from arbitrary point (z, t) ∈ �+

T till to intersection with axis ζ = 0 and using at the
intersection points conditions (5.3.3), one gets

u1(z, t) −
∫ z

0
q(ζ)(u1(ζ, z + t − ζ) + u2(ζ, z + t − ζ)) dζ = F1(t + z),

u2(z, t) −
∫ z

0
q(ζ)(u1(ζ, t − z + ζ) + u2(ζ, t − z + ζ)) dζ = F2(t − z),

(z, t) ∈ �+
T . (5.3.6)

At second, substituting in the first of these equations t = z and using condition
(5.3.5), one finds the relation

−
∫ z

0
q(ζ)(u1(ζ, 2z − ζ) + u2(ζ, 2z − ζ)) dζ = F1(2z),

that is, an additional equation for finding q(z). Differentiating it with respect to z,
one gets

− q(z)(u1(z, z) + u2(z, z)) − 2
∫ z

0
q(ζ)(u̇1(ζ, 2z − ζ)

+ u̇2(ζ, 2z − ζ)) dζ = 2F ′
1(2z), (5.3.7)

Use here the relations (5.3.5). Then the first term in this equation one can rewrite as
follows

−q(z)(u1(z, z) + u2(z, z)) = r22
√

μ− j (0)q(z) exp
( ∫ z

0
q(ζ) dζ

)
.

Denote
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p(z) = q(z) exp
( ∫ z

0
q(ζ) dζ

)
= d

dz
exp

( ∫ z

0
q(ζ) dζ

)
.

Then

exp
( ∫ z

0
q(ζ) dζ

)
= 1 +

∫ z

0
p(ζ) dζ > 0, (5.3.8)

and

q(z) = p(z)

1 + ∫ z
0 p(ζ) dζ

. (5.3.9)

Dividing both sides of (5.3.7) by r22
√

μ− j (0), one gets

p(z) − λ0

∫ z

0
q(ζ)(u̇1(ζ, 2z − ζ) + u̇2(ζ, 2z − ζ)) dζ = p0(z),

z ∈ [0, T/2], (5.3.10)

where

λ0 = 2

r22
√

μ− j (0)
, p0(z) = λ0F

′
1(2z)

and q(z) is defined by the formula (5.3.9).
Differentiating (5.3.6) with respect to t , one obtain equations for functions u̇1 and

u̇2. They have the form:

u̇1(z, t) −
∫ z

0
q(ζ)(u̇1(ζ, z + t − ζ) + u̇2(ζ, z + t − ζ)) dζ = F ′

1(t + z),

u̇2(z, t) −
∫ z

0
q(ζ)(u̇1(ζ, t − z + ζ) + u̇2(ζ, t − z + ζ)) dζ = F ′

2(t − z),

(z, t) ∈ �+
T .(5.3.11)

Now we can prove the existence and uniqueness of the local solution of the inverse
problem.

Theorem 5.3.1 Let μ(x3) = μ+ > 0, σ(x3) = 0, for x3 > 0, and j (t) ∈ C1[0, T ],
j (0) �= 0. Assume that f (t) ∈ C1[0, T ], T > 0, and the condition (5.2.36) holds.
Then for sufficiently small T > 0 there exist a unique continuously differentiable
positive solution of the inverse problem.

Proof First, we represent the Eqs. (5.3.10) and (5.3.11) in the operator form

ϕ = Aϕ, (5.3.12)
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where ϕ = (ϕ1,ϕ2,ϕ3) is the vector-function with components defined by the for-
mulae

ϕ1 = u̇1(z, t), ϕ2 = u̇2(z, t), ϕ3 = p(z)

and the operator A = (A1, A2, A3) is given by the relations

ϕ1(z, t) =
∫ z

0
q(ζ)(ϕ1(ζ, z + t − ζ) + ϕ2(ζ, z + t − ζ)) dζ + ϕ0

1(z, t),

ϕ2(z, t) =
∫ z

0
q(ζ)(ϕ1(ζ, z + t − ζ) + ϕ2(ζ, z + t − ζ)) dζ + ϕ0

2(z, t),

ϕ3(z) = λ0

∫ z

0
q(ζ)(ϕ1(ζ, 2z − ζ) + ϕ2(ζ, 2z − ζ)) dζ + ϕ0

3(z), (5.3.13)

where (z, t) ∈ �+
T ,

ϕ0
1(z, t) = F ′

1(t + z), ϕ0
2(z, t) = F ′

2(t − z), ϕ0
3(z) = p0(z)

and q(z) is defined by the formula

q(z) = ϕ3(z)

1 + ∫ z
0 ϕ3(ζ) dζ

. (5.3.14)

Then we define the ball B(ϕ0)

‖ϕ − ϕ0‖ ≤ ‖ϕ0‖,

centered at the element ϕ0 = (ϕ0
1,ϕ

0
2,ϕ

0
3), in the functional space of continuous

functions ϕ in �+
T with the norm

‖ϕ‖ = max
k=1,2,3

max
(z,t)∈�+

T

|ϕk(z, t)|.

Now we are going to prove that that the operator A is a contracting operator on
this ball, if T is enough small.

Let ϕ be arbitrary element of B(ϕ0). Then ‖ϕ‖ ≤ 2‖ϕ0‖. Making estimates one
finds

|ϕ1(z, t) − ϕ0
1(z, t)| ≤

∫ z

0
|q(ζ)|(|ϕ1(ζ, z + t − ζ)| + |ϕ2(ζ, z + t − ζ)|) dζ

≤ 4T ‖ϕ0‖
1 − T ‖ϕ0‖ ‖ϕ0‖, (z.t) ∈ �+

T .

We used here that
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|q(ζ)| ≤ 2‖ϕ0‖
1 − T ‖ϕ0‖ .

Similarly,

|ϕ2(z, t) − ϕ0
2(z, t)| ≤

∫ z

0
|q(ζ)|(|ϕ1(ζ, z + t − ζ)| + |ϕ2(ζ, z + t − ζ)|) dζ

≤ 4T ‖ϕ0‖
1 − T ‖ϕ0‖ ‖ϕ0‖, (z.t) ∈ �+

T ,

|ϕ3(z) − ϕ0
3(z)| ≤ = |λ0|

∫ z

0
|q(ζ)|(|ϕ1(ζ, 2z − ζ)| + |ϕ2(ζ, 2z − ζ)|) dζ

≤ 4T |λ0|‖ϕ0‖
1 − T ‖ϕ0‖ ‖ϕ0‖, z ∈ T/2.

From these estimates follows that ‖Aϕ − ϕ0‖ ≤ ‖ϕ0‖ if T satisfy the relations

4T max(1, |λ0|) ‖ϕ0‖
1 − T ‖ϕ0‖ < 1, T ‖ϕ0‖ < 1. (5.3.15)

This means that Aϕ ∈ B(ϕ0), i.e., the operator A maps the ball B(ϕ0) into itself.
Take now two arbitrary elements ϕ j , j = 1, 2, belonging to B(ϕ0) and denote

ϕ̃k = ϕ1
k − ϕ2

k, k = 1, 2, 3,

q j (z) = ϕ
j
3(z)

1 + ∫ z
0 ϕ

j
3(ζ) dζ

, j = 1, 2,

q̃(z) =
ϕ̃3(z)

(
1 + ∫ z

0 ϕ2
3(ζ) dζ

)
− ϕ2

3(z)
∫ z
0 ϕ̃3(ζ) dζ

(
1 + ∫ z

0 ϕ1
3(ζ) dζ

)(
1 + ∫ z

0 ϕ2
3(ζ) dζ

) .

From (5.3.13) we find

ϕ̃1(z, t) =
∫ z

0
[q1(ζ)(ϕ̃1(ζ, z + t − ζ) + ϕ̃2(ζ, z + t − ζ))

+q̃(ζ)(ϕ2
1(ζ, z + t − ζ) + ϕ2

2(ζ, z + t − ζ))] dζ,

ϕ̃2(z, t) =
∫ z

0
[q1(ζ)(ϕ̃1(ζ, z + t − ζ) + ϕ̃2(ζ, z + t − ζ))

+q̃(ζ)(ϕ2
1(ζ, z + t − ζ) + ϕ2

2(ζ, z + t − ζ))] dζ,

ϕ̃3(z) = λ0

∫ z

0
[q1(ζ)(ϕ̃1(ζ, 2z − ζ) + ϕ̃2(ζ, 2z − ζ))

+q̃(ζ)(ϕ2
1(ζ, 2z − ζ) + ϕ2

2(ζ, 2z − ζ))] dζ.

Then we can easily deduce the estimate:
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|ϕ̃1(z, t)| ≤
∫ z

0

(
|q1(ζ)|(|ϕ̃1(ζ, z + t − ζ)| + |ϕ̃2(ζ, z + t − ζ)|)

+q̃(ζ)(|ϕ2
1(ζ, z + t − ζ)| + |ϕ2

2(ζ, z + t − ζ)|)
)
dζ ≤ a‖ϕ̃‖, (z, t) ∈ �+

T ,

where

a = 2T ‖ϕ0‖
( 1

1 − T ‖ϕ0‖ + 1 + 2T ‖ϕ0‖
(1 − T ‖ϕ0‖)2

)
.

Similarly,

|ϕ̃2(z, t)| ≤ a‖ϕ̃‖, |ϕ̃3(z)| ≤ a|λ0|‖ϕ̃‖, (z, t) ∈ �+
T .

Take a positive ρ < 1 and choose T such small that amax(1, |λ0|) ≤ ρ and inequal-
ities (5.3.15) hold. Then the operator A is contracting on the ball B(ϕ0). According
the Banach’s principle the Eq. (5.3.12) has a unique solution which belongs to the
ball B(ϕ0). Hence, function q(z) is uniquely defined by the formula (5.3.9) and it
is continuous for z ∈ [0, T/2]. This means that the coefficient ε̂(z) is in C1[0, T/2].
Moreover, this coefficient can be derived via the function q(z) by the formula:

ε̂(z) = ε+ exp
(
4

∫ z

0
q(ζ) dζ

)
.

Having ε̂(z) we can find the correspondence between z and x3 using formula
(5.2.10), then calculate the unknown function ε(x3) = ε̂(h−1(x3)), where h−1(x3)
is the inverse of the function h(z). �

Note that the problem of finding the permeability μ(x3), when ε(x3) = ε+ is a
given positive constant and σ(x3) = 0 for x3 > 0, is completely symmetric to the
previous one. So, it does not require a separate investigation. Instead we consider the
following problem.

5.3.2 Problem of Finding a Conductivity Coefficient

In this case we assume that ε and μ are given. For the sake of simplicity, here we
assume that ε(x3) = ε+ > 0 and μ(x3) = μ+ > 0 for x3 > 0. In this case

q1(z) = q2(z) = 0, q3(z) = σ̂(z)

2ε+ := q(z), (5.3.16)

and the Eq. (5.2.14) have the form
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⎧⎪⎨
⎪⎩

∂u1
∂t

− ∂u1
∂z

+ q(z)(u1 + u2) = 0,

∂u2
∂t

+ ∂u2
∂z

+ q(z)(u1 + u2) = 0, (z, t) ∈ �+
T ,

(5.3.17)

which is quite similar to (5.3.4). One needs to add to these equations the boundary
conditions (5.3.3) and conditions (5.3.5) along the characteristic line t = z. Then we
obtain the integral equation for functions u1(z, t), u2(z, t) of the form:

u1(z, t) −
∫ z

0
q(ζ)(u1(ζ, z + t − ζ) + u2(ζ, z + t − ζ)) dζ = F1(t + z),

u2(z, t) +
∫ z

0
q(ζ)(u1(ζ, t − z + ζ) + u2(ζ, t − z + ζ)) dζ = F2(t − z),

(z, t) ∈ �+
T . (5.3.18)

Substituting in the first Eq. (5.3.18) t = z and using first condition (5.3.5), we find
the relation

∫ z

0
q(ζ)(u1(ζ, 2z − ζ) + u2(ζ, 2z − ζ)) dζ = F1(2z).

Differentiate the last equation with respect to t and denote again

p(z) = q(z) exp
( ∫ z

0
q(ζ) dζ

)
.

Then dividing both sides of the obtained relation by r22
√

μ− j (0), we get:

p(z) + λ0

∫ z

0
q(ζ)(u̇1(ζ, 2z − ζ) + u̇2(ζ, 2z − ζ)) dζ = p0(z),

z ∈ [0, T/2], (5.3.19)

where

λ0 = 2

r22
√

μ− j (0)
, p0(z) = λ0F

′
1(2z) (5.3.20)

and q(z) is defined by the formula (5.3.9).
Differentiating now (5.3.18) with respect to t , we obtain the following equations

for functions u̇1 and u̇2:
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u̇1(z, t) −
∫ z

0
q(ζ)(u̇1(ζ, z + t − ζ) + u̇2(ζ, z + t − ζ)) dζ = F ′

1(t + z),

u̇2(z, t) +
∫ z

0
q(ζ)(u̇1(ζ, t − z + ζ) + u̇2(ζ, t − z + ζ)) dζ = F ′

2(t − z),

(z, t) ∈ �+
T . (5.3.21)

The Eqs. (5.3.19) and (5.3.21) form the system of integral equations for deter-
mining the unknown functions u̇1(z, t), u̇2(z, t) and p(z) in the domain �+

T . This
system differs from the system (5.3.10) and (5.3.11) by some signs under the integral
terms. Therefore for this system the Contraction Mapping Principle can be applied
in the space of continuous functions to conclude that this system has a unique solu-
tion, when T > 0 is enough small. After finding p(z) we can calculate q(z), using
formula (5.3.9), and then find σ̂(z) = 2q(z)ε+. In this case we obtain the corre-
spondence between z and x3 of the form z = x3

√
ε+μ+. So, σ(x3) = σ̂(x3

√
ε+μ+).

Hence, the unique solution of the inverse problem exists and is a continuous function
on [0, T/2], if T is small enough.

As a result the following theorem holds.

Theorem 5.3.2 Let ε(x3) = ε+ > 0, μ(x3) = μ+ > 0 for x3 > 0, and j (t) ∈ C1

[0, T ], j (0) �= 0. Assume that f (t) ∈ C1[0, T ], T > 0, and condition (5.2.37) holds.
Then for sufficiently small T > 0 there exist a unique continuously differentiable
solution to the inverse problem.

For more general results related to inverse problems of electrodynamics we refer
the book [87].



Chapter 6
Inverse Problems for Parabolic Equations

This Chapter deals with inverse coefficient problems for linear second-order 1D
parabolic equations. We establish, first, a relationship between solutions of direct
problems for parabolic and hyperbolic equations. Then using the results ofChap. 4we
derive solutions of the inverse problems for parabolic equations via the corresponding
solutions of inverse problems for hyperbolic equations, using the Laplace transform.
In thefinal part of this chapter,we study the relationship between the inverse problems
for parabolic equation and inverse spectral problems.

6.1 Relationships Between Solutions of Direct Problems
for Parabolic and Hyperbolic Equations

Consider the following initial-boundary value problem

{( ∂

∂t
− l

)
v(x, t) = 0, (x, t) ∈ R

2
+,

v|t=0 = 0, v|x=0 = g(t),
(6.1.1)

for the parabolic equation in the first quadrant R2+ = {(x, t)| x > 0, t > 0} of the
plane R2, where

l := c2(x)
∂2

∂x2
+ b(x)

∂

∂x
+ d(x).
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Consider also the similar problem

⎧⎨
⎩

( ∂2

∂t2
− l

)
u(x, t) = 0, (x, t) ∈ R

2
+,

u|t=0 = 0, ut |t=0 = 0, u|x=0 = h(t)
(6.1.2)

for the hyperbolic equation. It turns out that the solution of the parabolic problem
(6.1.1) can be expressed via the solution of the hyperbolic problem (6.1.2), if the
function g(t) is related to h(t) by a special way. To show this, let us define the Laplace
transforms

ṽ(x, p) = ∫ ∞
0 v(x, t) exp(−pt) dt,

ũ(x, s) = ∫ ∞
0 u(x, t) exp(−st) dt

(6.1.3)

of the functions v(x, t) and u(x, t) given in (6.1.1) and (6.1.2). Here p = p1 + ip2
and s = s1 + is2 are the transform parameters and i := √−1 is the imaginary unit.
These transforms exist if the functions v(x, t) and u(x, t) satisfy the conditions

|v(x, t)| ≤ Ceσt , |u(x, t)| ≤ Ceσt , x ≥ 0, t ≥ 0,

with the positive constant C and real σ. Then the integrals in (6.1.3) exist for p1 >

σ and s1 > σ. Moreover, Laplace transforms are analytic functions of p and s,
respectively, in the complex half-planes p1 > σ and s1 > σ.

We assume that the functions v(x, t), u(x, t) with derivatives with respect to x
up to the second order, as well as the functions g(t) and h(t) admit the Laplace
transform with respect to t . Denote by g̃(p) and h̃(s) the Laplace transforms of the
input data g(t) and h(t) in (6.1.1) and (6.1.2), respectively. Then we can rewrite
problems (6.1.1) and (6.1.2) as follows:

p ṽ(x, p) − lṽ(x, p) = 0, x > 0; ṽ|x=0 = g̃(p), (6.1.4)

s2ũ(x, s) − lũ(x, s) = 0, x > 0; ũ|x=0 = h̃(s). (6.1.5)

Suppose now that s = √
p and g̃(p) = h̃(

√
p). Then it follows from (6.1.4) and

(6.1.5) that ṽ(x, p) = ũ(x,
√
p). According the table of Laplace transforms [7] the

last relations correspond to the formulae:

g(t) = 1

2
√

πt3

∫ ∞

0
h(τ )e− τ2

4t τdτ , (6.1.6)

v(x, t) = 1

2
√

πt3

∫ ∞

0
u(x, τ )e− τ2

4t τdτ . (6.1.7)
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Note that

τ

2
√

πt3
e− τ2

4t = − ∂

∂τ
G(τ , t), G(τ , t) = e− τ2

4t√
πt

,

where the function G(τ , t) solves the heat equation

∂G(τ , t)

∂t
= ∂2G(τ , t)

∂τ 2
, t > 0.

Under the consistency condition h(0) = 0 and the initial condition u(x, 0) = 0 in
(6.1.5), formulae (6.1.6), (6.1.7) can be also written as follows:

g(t) =
∫ ∞

0
h′(τ )G(τ , t) dτ , (6.1.8)

v(x, t) =
∫ ∞

0
uτ (x, τ )G(τ , t) dτ . (6.1.9)

We use the change of variables z = τ 2/(4t) in the integral (6.1.8) to prove that

g(0) = h′(0). (6.1.10)

We have:

g(0) := lim
t→+0

∫ ∞

0
h′(τ )G(τ , t) dτ = 2√

π
lim
t→+0

∫ ∞

0
h′(2

√
t z)e−z2 dz

= h′(0)
2√
π

∫ ∞

0
e−z2 dz = h′(0).

In the same way we can prove v(x, 0) = u(x, 0) = 0.
It can be verified directly that function v(x, t) given by formula (6.1.7) satisfy the

Eq. (6.1.1), if u(x, t) solves the problem (6.1.2). Indeed,

( ∂

∂t
− l

)
v(x, t) = −

( ∂

∂t
− l

) ∫ ∞

0
u(x, τ )Gτ (τ , t) dτ

=
∫ ∞

0

(
lu(x, τ )Gτ (τ , t) − u(x, τ )

∂

∂t
Gτ (τ , t)

)
dτ

=
∫ ∞

0

(
uττ (x, τ )Gτ (τ , t) − u(x, τ )

∂

∂t
Gτ (τ , t)

)
dτ

=
∫ ∞

0
u(x, τ )

( ∂2

∂τ 2
− ∂

∂t

)
Gτ (τ , t) dτ = 0.
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Note that the integral relation (6.1.6) is invertible. Moreover, it is the Laplace
transform with parameter p = 1/(4t). Indeed, it can be represented in the form:

g(t) = 1

4
√

πt3

∫ ∞

0
h(

√
z)e− z

4t dz. (6.1.11)

Hence, the function
√

π p−3g(1/(4p))/2 := ĝ(p) is the Laplace transform of the
function h(

√
t). Then ĝ(p) is an analytic function for Re(p) > 0 and, as a result,

the function h(t) can be uniquely recovered from g(t) by using the inverse Laplace
transform

h(t) = 1

2πi

∫ σ0+i∞

σ0−i∞
ĝ(p)ept

2
dp, t ≥ 0, (6.1.12)

where σ0 > 0.

6.2 Problem of Recovering the Potential for Heat Equation

Let v(x, t) be the solution of the parabolic equation

vt − vxx − q(x)v = 0, x > 0, t > 0, (6.2.1)

with the following boundary and initial conditions:

v|x=0 = g(t), t ≥ 0; v|t=0 = 0, x ≥ 0. (6.2.2)

For a given function g(t) from some class of admissible coefficients, we will define
problem (6.2.1) and (6.2.2) as the direct problem.

Consider the inverse problem of recovering the potential q(x) from the given
trace

r(t) := vx |x=0, t ≥ 0 (6.2.3)

of the derivative vx on the semi-axis x = 0, t ≥ 0 of the solution v = v(x, t; q).
Associate to the inverse problem (6.2.1), (6.2.2) and (6.2.3) the similar inverse

problem for the hyperbolic equation, i.e. let the direct problem is given by

utt − uxx − q(x)u = 0, x > 0, t > 0, (6.2.4)

u|x=0 = h(t), t ≥ 0; u|t=0 = 0, ut |t=0 = 0, x ≥ 0, (6.2.5)

ux |x=0 = f (t), t ≥ 0, (6.2.6)

and the Neumann type measured output data is given by (6.2.3).
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We assume here that q(x) ∈ C[0,∞) and the solutions to direct problems (6.2.1)
and (6.2.2) and (6.2.4) and (6.2.5) admit the Laplace transforms with respect to t .
Furthermore, suppose that the h(0) = 0 and the relationship (6.1.6) holds between
the input h(t) in the parabolic inverse problem (6.2.1) and (6.2.3) and the input
g(t) in the hyperbolic inverse problem (6.2.4) and (6.2.6). Then it is necessary that
f (0) = −h′(0) and functions r(t) and f (t) satisfy the relation

r(t) = 1

2
√

πt3

∫ ∞

0
f (τ )e− τ2

4t τdτ , t ≥ 0. (6.2.7)

The function f (t) can be found through r(t) by the formula

f (t) = 1

2πi

∫ σ0+i∞

σ0−i∞
r̂(p)ept

2
dp, t ≥ 0, (6.2.8)

similar to (6.1.12),where r̂(p) = √
π p−3r(1/(4p))/2.

Thus, the functions h(t) and f (t) in the inverse problem (6.2.4)–(6.2.6) are
uniquely defined by the functions g(t) and r(t). This means that instead of the
inverse problem (6.2.1)–(6.2.3) for parabolic equation one can solve the inverse
problem (6.2.4)–(6.2.6) for hyperbolic equation, to find unknown coefficient q(x)
for x ≥ 0. The last inverse problem has been studied in Sect. 3.2 under the condi-
tions that h(0) 	= 0 and h(t) ∈ C2([0,∞). But in our case we have assumed that
h(0) = 0. What should be done in this case? It turn out that we need to make a small
change in order to reduce the present problem to the previous one. Indeed, let we
suppose that g(0) 	= 0. Then, it follows from formula (6.1.10) that h′(0) = g(0) 	= 0.
Differentiating relations (6.2.4), (6.2.5) and (6.2.6) with respect to t , one gets

u̇t t − u̇xx − q(x)u̇ = 0, x > 0, t > 0, (6.2.9)

u̇|x=0 = h′(t), t ≥ 0; u̇|t=0 = 0, u̇t |t=0 = 0, x ≥ 0, (6.2.10)

u̇x |x=0 = f ′(t), t ≥ 0, (6.2.11)

where u̇ = ut . Note that the third relation (6.2.10) follows directly from Eq. (6.2.4)
with t = 0. So, the functions h′(t) and f ′(t) in the inverse problem (6.2.9), (6.2.10)
and (6.2.11) play the same roles, as the functions h(t) and f (t), in the inverse problem
studied in Sect. 4.2. Hence, we need suppose only that h(t) ∈ C3[0,∞) in order to
use the uniqueness Theorem 4.2.3 in Sect. 4.2 The following theorem is a direct
consequence of this conclusion.

Theorem 6.2.1 Assume that the function h(t), which is associated with the function
g(t) by formula (6.1.6), satisfies the following conditions: h(t) ∈ C3[0,∞), h(0) =
0, h′(0) 	= 0. Suppose, in addition, that q1, q2 ∈ C[0,∞) are any two solutions of
the inverse problem (6.2.1), (6.2.2) and (6.2.3) corresponding data g(t) and r(t).
Then q1(x) = q2(x) for x ∈ [0,∞).

http://dx.doi.org/10.1007/978-3-319-62797-7_4
http://dx.doi.org/10.1007/978-3-319-62797-7_4
http://dx.doi.org/10.1007/978-3-319-62797-7_4
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Remark 6.2.1 If g(t) is defined by formula (6.1.6), then g(t) is an analytic function
for t > 0. Then r(t) is also an analytic function of t > 0. Hence, uniqueness theorem
for the inverse problem (6.2.1), (6.2.2) and (6.2.3) is still true, if the data g(t) and
r(t) are given for t ∈ [0, T ] with arbitrary fixed T > 0.

6.3 Uniqueness Theorems for Inverse Problems Related
to Parabolic Equations

Consider the following initial-boundary value problem

⎧⎨
⎩

vt − (k(x)vx )x + q(x)v = 0, x > 0, t > 0;
v(x, 0) = 0, x ≥ 0;
v(0, t) = 0, t ≥ 0,

(6.3.1)

for the parabolic equation.
Let v(x, t) solves the initial-boundary value problem (6.3.1) and, in addition, the

trace of k(x)vx (x, t) is given at x = 0:

r(t) := k(0)vx (x, t)|x=0, t ≥ 0. (6.3.2)

Remark that in thermal conduction k(0)vx (x, t)|x=0 is defined as the heat flux, where
k(x) is the thermal conductivity.

Here and below we assume that k(x) and q(x) satisfy the conditions:

0 < k0 ≤ k(x) ≤ k1 ≤ ∞, |q(x)| ≤ q0, x ∈ [0,∞); (6.3.3)

k(x) ∈ C2[0,∞), q(x) ∈ C[0,∞), (6.3.4)

where k0, k1 q0 are some positive constants.
Consider the following two inverse coefficient problems.

ICP1: Find the unknown coefficient q(x) in (6.3.1) from the given by (6.3.2) output
data r(t).
ICP2: Find the unknown coefficient k(x) in (6.3.1) from the given by (6.3.2) output
data r(t).

In both cases the initial-boundary value problem (6.3.1) is defined as the direct
problem.

Obviously the coefficient k(x) in ICP1 is assumed to be known as well as the
coefficient q(x) in ICP2 assumed to be known. In both inverse problems we will
assume that k(0) is known.
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Consider first ICP1. Let us try to reduce the direct problem (6.3.1) to the simplest
form. For this goal, introduce the new variable y instead of x by the formula

y =
∫ x

0

dξ√
k(ξ)

. (6.3.5)

Let x = H(y) be the inverse function of y = y(x) given by (6.3.5). Denote by

k(H(y)) = k̂(y), q(H(y)) = q̂(y), v(H(y), t) = v̂(y, t).

Since

k(x)vx (x, t) = v̂y(y, t)
√
k̂(y)

∣∣∣
y=y(x)

,

(k(x)vx (x, t))x =
[
v̂yy(y, t) + v̂y(y, t)

(√
k̂(y)

)
y

]
y=y(x)

,

the function v̂(y, t) satisfies the relations

v̂t (y, t) − v̂yy(y, t) − v̂y(y, t)
(√

k̂(y)
)
y
+ q̂(y)v̂ = 0, y > 0, t > 0, (6.3.6)

v̂(y, 0) = 0, v̂(0, t) = g(t),
√
k(0)v̂y(0, t) = r(t). (6.3.7)

Introduce the new function w(y, t) by the formula v̂(y, t) = S(y)w(y, t), where
S(y) = (k(0)/k̂(y))1/4. Then w(y, t) solves the problem:

wt − wyy(y, t) + Q(y)w = 0, y > 0, t > 0, (6.3.8)

w(y, 0) = 0, w(0, t) = g(t),
√
k(0)

(
wy + S′(0)w

)
y=0

= r(t), (6.3.9)

where S′(0) = −k̂ ′(0)/(4k(0)) and Q(y) is defined by the formula

Q(y) = q(y) − S′′(y)
S(y)

+ 2
( S′(y)
S(y)

)2

= q(y) − (
ln S(z)

)′′ + [(
ln S(z)

)′]2
. (6.3.10)

From the latter two relations in (6.3.9) we find

wy|y=0 = r̂(t), r̂(t) = r(t)√
k(0)

− S′(0)g(t). (6.3.11)

Since S′(0) is known in this inverse problem the function r̂(t) is defined by the latter
equality.
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Consider now the boundary value problem for the hyperbolic equation

utt − uyy(y, t) + Q(y)u = 0, y > 0, t > 0, (6.3.12)

u(y, 0) = 0, ut (y, 0) = 0, y > 0, u(0, t) = h(t), t ≥ 0, (6.3.13)

where the function Q(y) is defined by (6.3.10), and the inverse problem of recovering
Q(y) from the data

uy |y=0 = f (t), t ≥ 0. (6.3.14)

Assume that h(t) ∈ C3[0,∞), h(0) = 0, h′(0) 	= 0, and functions g(t) and h(t) are
connected by formula (6.1.6). Then f (0) = −h′(0) and

r̂(t) =
∫ ∞

0
f ′(τ )G(τ , t) dτ . (6.3.15)

The function f (t), as a trace of the normal derivative uy on y = 0 to the problem
(6.3.12) and (6.3.13) belongs to C2[0,∞). Then the function u̇ = ut satisfies the
relations

u̇t t − u̇ yy − Q(y)u̇ = 0, y > 0, t > 0, (6.3.16)

u̇|y=0 = h′(t), t ≥ 0; u̇|t=0 = 0, u̇t |t=0 = 0, x ≥ 0, (6.3.17)

u̇ y|y=0 = f ′(t), t ≥ 0. (6.3.18)

From (6.3.16) and (6.3.17) follows that u̇(0, 0) = h′(0). Therefore, f ′(0) = −h′′(0)
and r̂(0) = f ′(0) = −h′′(0). Since

r̂(0) = r(0)√
k(0)

− S′(0)g(0), g(0) = h′(0),

we can find S′(0) by the formula

S′(0) = h′′(0)
h′(0)

+ r(0)√
k(0)h′(0)

. (6.3.19)

On the over hand, S′(0) = −k̂ ′(0)/(4k(0)). Thus, the formula (6.3.19) gives the
necessary condition of solvability to inverse problem of finding q(x) from the data
g(t) and r(t), it means, that the value h′′(0) must be taken from the relation (6.3.19).

For the inverse problem (6.3.16), (6.3.17) and (6.3.18) the uniqueness theorem
holds.Hence, the inverse problemoffinding Q(y) forEqs.(6.3.8), (6.3.9) and (6.3.11)
has at most one solution. Since k(x) is known, then y = y(x) given by (6.3.5) as well
as S(y) are also known. So, we can find q(y) from given Q(y) and S(y). Therefore
we can determine and q(x) = q(y(x)). Taking into account the Remark4.3.1 we
come to the following uniqueness theorem.

http://dx.doi.org/10.1007/978-3-319-62797-7_4
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Theorem 6.3.1 Let conditions 6.3.3 hold. Assume that the function h(t), which is
associated with the function g(t) by formula (6.1.6), satisfies the following condi-
tions: h(t) ∈ C3[0,∞), h(0) = 0, h′(0) 	= 0 and h′′(0) satisfies the relation (6.3.19).
Denote by q, q2 ∈ C[0,∞) two solutions of ICP1, defined by (6.3.1) and (6.3.2),
with data g(t) and r(t), given for t ∈ [0, T ], T > 0. Then q1(x) = q2(x) for
x ∈ [0,∞).

Consider now ICP2. Assume now that q(x) = q0 is a given constant and k(0) >

0 is known. We reduce the ICP2 to Eqs. (6.3.8) and (6.3.11). Since in this case
k̂(y) is unknown, S′(0) in (6.3.11) is also unknown. Let us explain how to find
S′(0). Consider again the problem (6.3.12) and (6.3.13). Then the relation (6.3.19)
holds and defines S′(0). So the function r̂(t) is become known and Eq. (6.3.15)
uniquely determines f ′(t). As in the previous case, solving the inverse problem for
the hyperbolic equationwe can find the function Q(y). Then using (6.3.10) we obtain
the second order differential equation for function ln S(y):

Q(y) − q0 = −(
ln S(z)

)′′ + [(
ln S(z)

)′]2
(6.3.20)

with given Cauchy data S(0) and S′(0). From this equation and initial data the
function ln S(y) is uniquely determined for all x ∈ [0,∞). After this we can find
k̂(y), y = y(x) and k(x) = k̂(y(x)). Hence the following theorem holds.

Theorem 6.3.2 Let h(t) ∈ C3[0,∞), h(0) = 0, h′(0) 	= 0, and functions g(t) and
h(t) are connected by formula (6.1.6). Let, moreover, q(x) = q0 be a given constant
and k(0) > 0 be known and k1(x) and k2(x) be two solutions to the problem (6.3.1)
and (6.3.2) with data g(t) and r(t) given for t ∈ [0, T ], T > 0. Then k1(x) = k2(x)
for x ∈ [0,∞).

6.4 Relationship Between the Inverse Problem and Inverse
Spectral Problems for Sturm-Liouville Operator

In this section we will analyze the relations between the inverse problems for par-
abolic equation and inverse spectral problems.

Let v(x, t) be the solution of the parabolic equation

vt − vxx + q(x)v = g(x, t), 0 < x < 1, t > 0, (6.4.1)

with given function g(x, t) and given the initial and boundary data

vx |x=0 = 0, v|x=1 = 0, t ≥ 0; v|t=0 = 0, x ≥ 0. (6.4.2)
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Our aim is to show that problem (6.4.1) and (6.4.2) is related to the problem of
finding eigenvalues for the ordinary differential equation

− y′′(x) + q(x)y(x) = λy(x), 0 < x < 1, (6.4.3)

with boundary data

y′(0) = 0, y(1) = 0. (6.4.4)

Remember that λ is called an eigenvalue of the differential operator −y′′(x) +
q(x)y(x) subject to the boundary conditions (6.4.4) provided there exists a function
u(x), not identically zero, solving problem (6.4.3) and (6.4.4). The solution u(x)
is called the corresponding eigenfunctions. It is well known that the eigenfunctions
of the differential operator form countable set λn , n = 1, 2, . . ., with the unique
concentration point at infinity and the eigenfunctions yn(x), n = 1, 2, . . ., are dense
in the space L2(0, 1). Note that all λn > 0, if q(x) ≥ 0.

Applying the Fourier method to problem (6.4.1) and (6.4.2) we can construct the
solution in the form

v(x, t) =
∞∑
n=1

vn(t)yn(x), (6.4.5)

where vn(t) are solutions to the Cauchy problem

v′
n + λnvn = gn(t), vn(0) = 0, n = 1, 2, . . . , (6.4.6)

and gn(t) are the Fourier coefficients of g(x, t) with respect to the eigenfunctions
yn(x), n = 1, 2, . . ., i.e.,

gn(t) = 1

‖yn‖2
∫ 1

0
g(x, t)yn(x)dx, n = 1, 2, . . . . (6.4.7)

The solutions to the problem (6.4.6) have the form

vn(t) =
∫ t

0
gn(τ )e−λn(t−τ )dτ , n = 1, 2, . . . . (6.4.8)

Thus, the solution to the problem (6.4.1) and (6.4.2) is given by the formulae (6.4.5),
(6.4.7), (6.4.8). From them follows that

v(x, t) =
∞∑
n=1

yn(x)

‖yn‖2
∫ t

0
e−λn(t−τ )

∫ 1

0
g(x, τ )yn(x)dxdτ . (6.4.9)
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We can represent formula (6.4.8) in an other form. To this end, denote the solution
the equation (6.4.3) with the Cauchy data

y(0) = 1, y′(0) = 0 (6.4.10)

by y(x,λ). Then λn satisfy the conditions

y(1,λn) = 0, n = 1, 2, . . . . (6.4.11)

Denote by yn(x) = y(x,λn).
Introduce the spectral function ρ(λ), λ ∈ (−∞,∞), by the formula

ρ(λ) =
⎧⎨
⎩
0, if λ < λ1,
k∑

n=1

1

‖yn‖2 , if λk < λ < λk+1.
(6.4.12)

Then formula (6.4.9) can be written as follows

v(x, t) =
∫ ∞

−∞
y(x,λ)

∫ t

0
e−λ(t−τ )

∫ 1

0
g(ξ, τ )y(ξ,λ)dξdτdρ(λ), (6.4.13)

where the integral with respect to λ should be understood as a Stieltjes integral or in
the sense of distributions.

For the direct problem (6.4.1) and (6.4.2) with the given function g(x, t), we
consider the inverse problem of recovering the potential q(x) from a given trace of
the solution v(x, t) on semi-axis x = 0, t ≥ 0, i.e.,

r(t) := v|x=0, t ≥ 0. (6.4.14)

It is easy to derive the function r(t) via the spectral function ρ(λ). Indeed, by
y(0,λ) = 1, we conclude:

r(t) =
∫ ∞

−∞

∫ t

0
e−λ(t−τ )

∫ 1

0
g(ξ, τ )y(ξ,λ)dξdτdρ(λ), t ≥ 0. (6.4.15)

Consider now case when g(x, t) = δ(x + 0)δ(t + 0). Here δ(x + 0) is the Dirac-
delta function located at the point x = +0. Then two inner integrals in formula
(6.4.15) are calculated explicitly and we obtain more simple formula:

r(t) =
∫ ∞

−∞
e−λt dρ(λ), t ≥ 0. (6.4.16)

This equality uniquely defines the spectral function ρ(λ). Then for the direct problem
of finding eigenvalues and eigenfunctions related to Eqs. (6.4.3) and (6.4.4) we can
consider the inverse spectral problem: given ρ(λ) find q(x). This problem is equiv-
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alent to the inverse problem for the parabolic equation. Indeed, given r(t) we find
ρ(λ) and vice versa given ρ(λ) we find r(t). For the inverse spectral problem is well
known uniqueness theorem stated by V.A. Marchenko first in [65] (see also, [66]).

Theorem 6.4.1 The potential q(x) ∈ C[0, 1] is uniquely recovered by the spectral
function ρ(λ).

As a corollary, we obtain the uniqueness theorem for the inverse problem (6.4.1),
(6.4.2), (6.4.14).

Theorem 6.4.2 Let g(x, t) = δ(x + 0)δ(t + 0) and q(x) ∈ C[0, 1]. Then q(x) is
uniquely determined by the given function r(t).

Note that the assertions of both theorems remains true if the finite interval [0, 1]
is replaced on semi-infinite interval [0,∞).

6.5 Identification of a Leading Coefficient in Heat
Equation: Dirichlet Type Measured Output

In this section we consider the problem of determining the space-dependent thermal
conductivity k(x) of the one-dimensional heat equation ut (x, t) = (k(x)ux (x, t))x
from boundary measurements in the finite domain �T = {(x, t) ∈ R

2 : 0 < x <

l, 0 < t ≤ T }.
Consider the inverse problem of identifying the leading coefficient k(x) in

⎧⎨
⎩
ut (x, t) = (k(x)ux (x, t))x , (x, t) ∈ �T ,

u(x, 0) = 0, 0 < x < l,
−k(0)ux (0, t) = g(t), ux (l, t) = 0, 0 < t < T,

(6.5.1)

from themeasured temperature f (t) at the left boundary x = 0 of a nonhomogeneous
rod:

f (t) := u(0, t), t ∈ [0, T ]. (6.5.2)

Note that problem (6.5.1) is a simplest 1D model of heat conduction in a rod
occupying the interval (0, l). The Neumann condition −k(0)ux (0, t) = g(t) in the
direct problem (6.5.1) means that the heat flow g(t) is prescribed at the left boundary
of the rod as an input datum for all t ∈ [0, T ].

We assume that the functions k(x) and g(t) satisfy the following conditions:

{
k ∈ H 1(0, l), 0 < c0 ≤ k(x) ≤ c1 < ∞;
g ∈ H 1(0, T ), g(t) > 0, for all t ∈ (0, T ) and g(0) = 0.

(6.5.3)
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The second condition in (6.5.3) means heating of a rod at the left end, that is heat
flux at x = 0 is positive: g(t) > 0 for all t ∈ (0, T ) and is zero at an initial time
t = 0, i.e. g(0) = 0.

Under conditions (6.5.3) the initial boundary value problem (6.5.1) has the unique
regular weak solution

⎧⎨
⎩
u ∈ L∞(0, T ; H 2(0, l)),
ut ∈ L∞(0, T ; L2(0, l)) ∩ L2(0, T ; H 1(0, l)),
utt ∈ L2(0, T ; H−1(0, l)),

(6.5.4)

with improved regularity ([24], Sect. 7.1, Theorem 5).
In next subsection we derive some important properties of the solution u(x, t) of

the direct problem (6.5.1), in particular the output u(0, t; k). Then we introduce an
input-output operator and reformulate the inverse coefficient problem (6.5.1) and
(6.5.2) as a nonlinear operator equation. We prove in Sect. 6.5.2 that the input-
output operator is compact and Lipschitz continuous which allows to prove an
existence of a minimizer of the corresponding regularized functional. In Sect. 6.5.3
we introduce an adjoint problem and derive an integral relationship relating the
change δk(x) := k1(x) − k2(x) in the coefficient k(x) to the change of the output
δu(x, t) = u(0, t; k1) − u(0, t; k2). This permits to obtain explicit formula for the
Fréchet gradient J ′(k) of the Tikhonov functional via the solutions of the direct and
adjoint problems. This approach, defined as an adjoint problem approach, has been
proposed by Cannon and DuChateau [16, 22] and then developed in [37]. Further-
more, these results also constitute a theoretical framework of the numerical algorithm
to recover the unknown coefficient. Some numerical examples applied to severely ill-
posed benchmark problems, presented in the final subsection Sect. 6.5.4 demonstrate
accurate reconstructions by the CG-algorithm.

6.5.1 Some Properties of the Direct Problem Solution

The theorem below shows that sign of the input datum g(t) has a significant impact
on the solution of the direct problem (6.5.1).

Theorem 6.5.1 Let conditions (6.5.3) hold. Then g(t) > 0 for all t ∈ (0, T ), implies
ux (x, t) ≤ 0, for all (x, t) ∈ �T .

Proof Let ϕ ∈ C2,1
0 (�T ) ∪ C0(�T ) be an arbitrary smooth function. Multiply both

sides of the parabolic equation (6.5.1) by ϕx (x, t), integrate on�T and then perform
integration by parts multiple times. After elementary transformations we get:

∫∫
�T

ux (ϕt + k(x)ϕxx ) dxdt

=
∫ T

0
(uϕt )

x=l
x=0 dt +

∫ T

0
(k(x)uxϕx )

x=l
x=0 dt −

∫ l

0
(uϕx )

t=T
t=0 dx . (6.5.5)
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Nowwe require that the function ϕ(x, t) is chosen to be the solution of the following
backward parabolic problem:

⎧⎨
⎩

ϕt + k(x)ϕxx = F(x, t), (x, t) ∈ �T ,

ϕ(x, T ) = 0, x ∈ (0, l),
ϕ(0, t) = 0, ϕ(l, t) = 0, t ∈ (0, T ),

(6.5.6)

where an arbitrary continuous function F(x, t) which will be defined below. Then
taking into account the homogeneous initial and boundary conditions given in (6.5.1)
and (6.5.6) with the flux condition −k(0)ux (0, t) = g(t), in the integral identity
(6.5.5) we get:

∫∫
�T

ux (x, t)F(x, t)dxdt =
∫ T

0
g(t)ϕx(0, t)dt. (6.5.7)

We apply the maximum principle to the backward in time parabolic problem
(6.5.6). For this aim we require that the arbitrary function F(x, t) satisfies the con-
dition F(x, t) > 0 for all (x, t) ∈ �T . Then ϕ(x, t) < 0 on �T . This, with the
boundary condition ϕ(0, t) = 0, implies

ϕx (0, t) := lim
h→0+

ϕ(h, t) − ϕ(0, t)

h
≤ 0.

On the other hand, by the condition g(t) > 0 we conclude that the right hand side of
(6.5.7) is non-positive, so

∫∫
�T

ux (x, t)F(x, t)dxdt ≤ 0, for all F(x, t) > 0.

This implies that ux (x, t) ≤ 0 for all (x, t) in �T . �

Remark 6.5.1 The result of the above theorem has a precise physical meaning. By
definition, g(t) := −k(0)ux (0, t) is the heat flux at x = 0. The sign minus here
means that, by convention, the heat flows in the positive x-direction, i.e. from regions
of higher temperature to regions of lower temperature. The condition g(t) > 0,
t ∈ (0, T ) implies that the heat flux at x = 0 is positive. Theorem 6.5.1 states that
in the absence of other heat sources, the positive heat flux g(t) > 0 at the left end
x = 0 of a rod results the nonnegative flux at all points x ∈ (0, l) of a rod, that is
−k(x)ux (x, t) ≥ 0.

Corollary 6.5.1 Assume that, in addition to conditions of Theorem 6.5.1, the solu-
tion of the direct problem belongs to C1,0(�T ). Then there exists such ε = ε(t) > 0
that ux (x, t) < 0, for all (x, t) ∈ �ε

T , where �ε
T := {(x, t) ∈ �T : 0 < x <

ε(t), 0 < t ≤ T } is the triangle with two rectilinear sides �1 := {(x, t) ∈ �ε
T : x =

0, t ∈ [0, T ]}, �2 := {(x, t) ∈ �ε
T : x ∈ (0, ε(T )], t = T } and the curvilinear side
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�3 := {(x, t) ∈ �ε
T : x = ε(t), t ∈ (0, T )}. The parameter ε(t) > 0 depending on

t ∈ (0, T ] satisfies the condition ε(0) = 0.

Proof Indeed, since ux (x, t) is a continuous function of x ∈ (0, l) and ux (0, t) < 0
for all t ∈ (0, T ), it remains negative throughout the right neighborhood�ε

T of x = 0,
that is ux (x, t) < 0 for all (x, t) ∈ �ε

T . Since ux (0, 0) = 0, this neighborhood is the
above defined triangle �ε

T with the bottom vertex at the origin (x, t) = (0, 0). �

6.5.2 Compactness and Lipschitz Continuity
of the Input-Output Operator. Regularization

Let us define the set of admissible coefficients

K := {k ∈ H 1(0, l) : 0 < c0 ≤ k(x) ≤ c1 < ∞}. (6.5.8)

For a given coefficient k ∈ K we denote by u = u(x, t; k) the solution of the direct
problem (6.5.1). Then introducing the input-output operator or coefficient-to-data
mapping

{
�[k] := u(x, t; k)|x=0+ ,

�[·] : K ⊂ H 1(0, l) �→ L2(0, T ),
(6.5.9)

we can reformulate the inverse coefficient problem (6.5.1) and (6.5.2) in the following
nonlinear operator equation form:

�[k](t) = f (t), t ∈ (0, T ], (6.5.10)

where f (t) is the noise free measured output and u(0, t; k) is the output, correspond-
ing to the coefficient k ∈ K. Therefore the inverse coefficient problem with the given
measured output datum can be reduced to the solution of the nonlinear equation
(6.5.10) or to inverting the nonlinear input-output operator defined by (6.5.9).

Lemma 6.5.1 Let conditions (6.5.3) hold. Then the input-output operator �[·] :
K ⊂ H 1(0, l) �→ L2(0, T ) defined by (6.5.9) is a compact operator.

Proof Let {km} ⊂ K, m = 1,∞, be a bounded in H 1(0, l)-norm sequence of
coefficients. Denote by {um(x, t)}, um := u(x, t; km), the sequence of corresponding
regularweak solutions of the direct problem (6.5.1). Then {u(0, t; km} is the sequence
of outputs. We need to prove that this sequence is a relatively compact subset of
L2(0, T ) or, equivalently, the sequence {um(0, t)} is bounded in the norm of the
Sobolev space H 1(0, T ).
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To estimate the norm ‖um,t (0, ·)‖L2(0,T ) we use inequality (B.2.2) in
Appendix B.2:

∫ T

0
u2m,t (0, t)dt

≤ 2

l

∫ T

0

[
ess sup

[0,T ]

∫ l

0
u2m,t (x, t)dx

]
dt + 2l

∫ T

0

∫ l

0
u2m,xt (x, t)dxdt. (6.5.11)

Now we use a priori estimates (B.2.4) and (B.2.5) for the regular weak solution,
given in Appendix B.2 to estimate the right hand side integrals. We have:

ess sup
[0,T ]

∫ l

0
u2m,t (x, t)dx ≤ C2

1 ‖g′‖2L2(0,T ),∫∫
�T

u2m,xt dxdt ≤ C2
2 ‖g′‖2L2(0,T )

where the constant c0 > 0 is the lower bound on the coefficient k(x) and

{
C1 = (l/c0)

1/2 exp(2T c0/ l
2),

C2 = (
2TC2

1/ l
2 + l/c20

)1/2 (6.5.12)

are the same constants defined by (B.1.4) in Appendix B.2. Substituting these esti-
mates into (6.5.11) we conclude that

∫ T

0
u2m,t (0, t)dt ≤ C2

3 ‖g′‖2L2(0,T ), (6.5.13)

where the constant C3 > 0 is defined as follows:

C2
3 = (2T/ l)C2

1 + 2lC2
2 . (6.5.14)

Using a priori estimate (B.1.6) given in Appendix B.1, in the same way we can
prove that

∫ T

0
u2m(0, t)dt ≤ C2

3 ‖g‖2L2(0,T ), (6.5.15)

where C3 > 0 is the constant defined by (6.5.14).
It follows from estimates (6.5.13) and (6.5.15) that the sequence of outputs

{um(0, t)} is uniformly bounded in the norm of H 1(0, T ). By the compact imbedding
H 1(0, T ) ↪→ L2(0, T ). This implies that this sequence is a precompact in L2(0, T ).
Therefore, the input-output operator� transforms eachbounded in H 1(0, l) sequence
of coefficients {km(x)} to the precompact in L2(0, l) sequence of outputs {um(0, t)}.
This means that � is a compact operator. This completes the proof of the lemma. �
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As a consequence ofLemma6.5.1we conclude that the inverse coefficient problem
(6.5.1) and (6.5.2) is ill-posed.

Lemma 6.5.2 Let conditions (6.5.3) hold. Denote by u(x, t; k1) and u(x, t; k2) the
regular weak solutions of the direct problem (6.5.1) corresponding to the admissible
coefficients k1, k2 ∈ K, respectively. Then the following estimate holds:

‖u(0, t; k1) − u(0, t; k2)‖2L2(0,T )

≤ McC
2
2‖g‖2L2(0,l)‖k1 − k2‖2C[0,l]. (6.5.16)

where Mc = (2T/ l + l/2)/c0 > 0 and C2 > 0 is the constant defined in (6.5.12).

Proof For simplicity, we denote by v(x, t) := u(x, t; k1) − u(x, t; k2). Then the
function v(x, t) solves the following initial boundary value problem:

⎧⎨
⎩

vt = (k1(x)vx )x + (δk(x)u2x )x , (x, t) ∈ �T ,

v(x, 0) = 0, 0 < x < l,
−k1(0)vx (0, t) = δk(0)u2x (0, t), vx (l, t) = 0, 0 < t < T,

(6.5.17)

where ui (x, t) := u(x, t; ki ), i = 1, 2 and δk(x) = k1(x) − k2(x).
To estimate the norm ‖v(0, ·)‖L2(0,T ) := ‖δu(0, ·)‖L2(0,T ) we use first the identity

v2(0, t) =
(

v(x, t) −
∫ x

0
vξ(ξ, t)dξ

)2

, v ∈ L2(0, T ; H 1(0, l)).

We apply to the right hand side the inequality (a − b)2 ≤ 2(a2 + b2) and then the
Hölder inequality. Integrating then on [0, T ] we obtain the following inequality:

∫ T

0
v2(0, t)dt ≤ 2

∫ T

0
v2(x, t)dt + 2x

∫ T

0

∫ l

0
v2
x (x, t)dxdt.

Integrating again on [0, l] and then dividing by l > 0 both sides we arrive at the
inequality:

∫ T

0
v2(0, t)dt ≤ 2

l

∫∫
�T

v2(x, t)dxdt + l
∫∫

�T

v2
x (x, t)dxdt. (6.5.18)

This inequality shows that to prove the lemma we need to estimate the right hand
side norms ‖v‖L2(�T ) and ‖vx‖L2(�T ) via the norm ‖δk‖H 1(0,l). To do this, we use
now the standard L2-energy estimates for the weak solution of the initial boundary
value problem (6.5.17).
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Multiplying both sides of the parabolic equation (6.5.17) by v(x, t), integrating
on �t = {(x, τ ) ∈ R

2 : 0 < x < l, 0 < τ ≤ t, t ∈ (0, T ]} and then using the
formulas for integration by parts we obtain the following identity:

1

2

∫ l

0
v2(x, t)dt +

∫∫
�t

k1(x)v
2
x (x, τ )dτdx −

∫ t

0
(k1(x)vx (x, τ )v(x, τ ))x=l

x=0 dτ

= −
∫∫

�t

δk(x)u2x (x, τ )vx (x, τ )dτdx +
∫ t

0
(δk(x)u2x (x, τ )v(x, τ ))x=l

x=0 dτ ,

for all t ∈ [0, T ]. The terms under the last left and right hand side integrals are zero at
x = l due to the homogeneous boundary conditions in (6.5.17). Taking into account
the Neumann boundary condition −k1(0)δux (0, t) = δk(0)ux (0, t; k2) in the last
left hand side integral we deduce that this term and the term at x = 0 under the
last right hand side integral are mutually exclusive. Then the above integral identity
becomes ∫ l

0
v2(x, t)dt + 2

∫∫
�t

k1(x)v
2
x (x, τ )dτdx

= −2
∫∫

�t

δk(x)u2x (x, τ )vx (x, τ )dτdx, (6.5.19)

for a.e. t ∈ [0, T ].
The first consequence of the energy identity (6.5.19) is the inequality

c0

∫∫
�T

v2
x (x, t)dtdx ≤ ‖δk‖C[0,l]

∣∣∣∣
∫∫

�T

u2x (x, τ )vx (x, t)dtdx

∣∣∣∣ ,
since k1(x) ≥ 2c0. Applying the Hölder inequality to the right hand side integral
and then dividing both sides by the norm ‖vx‖L2(0,T ;L2(0,l)), we deduce from this
identity the estimate for the L2-norm of the gradient of the weak solution of problem
(6.5.17):

‖vx‖L2(0,T ;L2(0,l)) ≤ 1

2c0
‖δk‖C[0,l] ‖u2x‖L2(0,T ;L2(0,l)), c0 > 0. (6.5.20)

Now we use again the energy identity (6.5.19) to estimate the first right hand side
integral in (6.5.18). We have:

∫ l

0
v2(x, t)dx ≤ 2‖δk‖C[0,l] ‖u2x‖L2(0,T ;L2(0,l)) ‖vx‖L2(0,T ;L2(0,l)).
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Integrating both sides on [0, T ] and using estimate (6.5.20) for the right hand side
norm ‖vx‖L2(0,T ;L2(0,l)) we conclude:∫∫

�T

v2(x, t)dxdt ≤ T

c0
‖δk‖2C[0,l] ‖u2x‖2L2(0,T ;L2(0,l)).

Substituting this with estimate (6.5.20) in (6.5.18) we obtain:

∫ T

0
v2(0, t)dx ≤ 1

c0

(
2T

l
+ l

2

)
‖δk‖2C[0,l] ‖u2x‖2L2(0,T ;L2(0,l)). (6.5.21)

For the gradient norm ‖u2x‖L2(0,T ;L2(0,l)) of the solution u(x, t; k2) of the direct
problem (6.5.1) with k(x) = k2(x) we use the estimate

∫∫
�T

u22x (x, τ )dxdt ≤ C2
2

∫ T

0
g2(t)dt, C2 > 0

given by (B.1.12) in Appendix B.2. Taking into account this in (6.5.21) we finally
arrive at the required estimate (6.5.16). This completes the proof of the lemma. �

The main consequence of this lemma is the Lipschitz continuity of the nonlinear
input-output operator �[·] : K ⊂ H 1(0, l) �→ L2(0, T ).

Corollary 6.5.2 Let conditions of Lemma6.5.2 hold. Then the input-output operator
defined by (6.5.9) is Lipschitz continuous,

‖�[k1] − �[k2]‖L2(0,T ) ≤ L0‖k1 − k2‖C[0,l], k1, k2 ∈ K, (6.5.22)

with the Lipschitz constant

L0 = ((2T/ l + l)/c0)
1/2 C2 ‖g‖L2(0,T ) > 0. (6.5.23)

Remark 6.5.2 By the condition k ∈ H 1(0, l) the function k(x) can be identified with
a continuous function and the estimate ‖k‖C[0,l] ≤ Cl‖k‖H 1(0,l) holds. This implies
that the Lipschitz continuity of the input-output mapping remains valid also in the
natural norm of k(x):

‖�[k1] − �[k2]‖L2(0,T ) ≤ L0Cl‖k1 − k2‖H 1(0,l), Cl > 0. (6.5.24)

Due to measurement error in the output data the exact equality in the operator
equation

�[k](t) = f δ(t), t ∈ (0, T ], (6.5.25)

is not possible in practice, where f δ ∈ L2(0, T ) is the noisy data: ‖ f − f δ‖L2(0,T ) ≤
δ, δ > 0. Hence, one needs to introduce the regularized form
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Jα(k) = 1

2

∥∥�[k] − f δ
∥∥2

L2(0,T )
+ α

2
‖k ′‖2L2(0,T ), k ∈ K (6.5.26)

of the Tikhonov functional

J (k) = 1

2

∥∥�[k] − f δ
∥∥2

L2(0,T )
, k ∈ K

and consider inverse coefficient problem (6.5.1) and (6.5.2) as a minimum problem
for the functional (6.5.26) on the set of admissible coefficients K. Note that the
regularization (6.5.26) including the term ‖k ′‖L2(0,T ) is referred as the Tikhonov reg-
ularization with a Sobolev norm or as higher-order Tikhonov regularization (see [2]).

Having compactness and continuity of the input-output operator, we can prove an
existence of a minimizer kδ

α ∈ K.

Theorem 6.5.2 Let conditions (6.5.3) hold. Then for any α > 0, the functional
(6.5.26) attains a minimizer kδ

α ∈ K.

Proof Since the input-output operator �[·] : K ⊂ H 1(0, l) �→ L2(0, T ) is compact
and continuous, it is weakly continuous. This implies that the functional Jα(k) is
weakly lower semi-continuous, also coercive and bounded from below. This guar-
antees the existence of a minimizer. �

Let us assume now that the input-output operator is injective. In this case we
may apply the regularization theory for nonlinear inverse problems given in ([23],
Chap. 11) to guarantee the convergence of subsequences to aminimumnormsolution.
Remark that assuming the injectivity of the input-output operator we assume that
solution of the inverse problem (6.5.1) and (6.5.2) is unique.

Theorem 6.5.3 Let conditions (6.5.3) hold. Assume that the input-output operator
�[·] : K ⊂ H 1(0, l) �→ L2(0, T ) is injective. Denote by { f δm } ⊂ L2(0, T ) a
sequence of noisy data satisfying the conditions ‖ f − f δm‖L2(0,T ) ≤ δm and δm → 0,
as m → ∞. If

αm := α(δm) → 0 and
δ2m

α(δm)
→ 0, as δm → 0, (6.5.27)

then the regularized solutions kδm
αm

∈ K converge to the best approximate solution
u† := A† f of equation (6.5.10), as m → ∞.

For the general case this theoremwith proof is given in ([23]Chap.11, Theorem11.3).
Remark that this theorem is an analogue of Theorem 2.5.2, Chap.2 for the case

of the nonlinear input-output operator.

http://dx.doi.org/10.1007/978-3-319-62797-7_2
http://dx.doi.org/10.1007/978-3-319-62797-7_2
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Fig. 6.1 Coefficients ki (x) (left figure) and the corresponding outputs u(0, t; ki ), i = 1, 2 (right
figure)

As mentioned, Lemma 6.5.1 implies that the inverse coefficient problem (6.5.1)
and (6.5.2) is ill-posed. Furthermore, the following example providing further
insights into the severely ill-posedness of this inverse problem shows that very small
changes in the measured output u(0, t; k) can lead to unacceptably large perturba-
tions in the coefficient k(x).

The outputs u(0, t; ki ), i = 1, 2, plotted in the right Fig. 6.1, are obtained from
the finite-element solution of the direct problem (6.5.1) for the following coefficients
(Fig. 6.1):

k1(x) = 1 + 0.25 sin(πx),

k2(x) =
{
1 + (k1(ξ) − 1) x

ξ
, x ∈ [0, ξ],

1 + (k1(ξ) − 1) 1−x
1−ξ

, x ∈ (ξ, 1], ξ = 0.1,

with g(t) = t , t ∈ [0, T ]. The figures illustrate high sensitivity of the inverse problem
to changes in output datum. That is, almost indistinguishable outputsmay correspond
to quite different coefficients. Thus solution of the inverse problem is highly sensitive
to noise and this is a reason that inverse coefficient problems are extremely difficult
to solve numerically.

6.5.3 Integral Relationship and Gradient Formula

We derive now an integral relationship relating the change δk(x) := k1(x) − k2(x)
in the coefficient to the change of the output δu(x, t) = u(0, t; k1) − u(0, t; k2)
corresponding to the coefficients k1, k2 ∈ K.
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Lemma 6.5.3 Let conditions (6.5.3) hold. Denote by um(x, t) := u(x, t; km) and
um(0, t) = u(0, t; km) the solutions of the direct problem (6.5.1) and outputs, corre-
sponding to the given admissible coefficients km ∈ K, m = 1, 2. Then the following
integral relationship holds:

∫ T

0
[u1(0, t) − u2(0, t)]q(t)dt = −

∫∫
�T

δk(x)u2x (x, t)ϕx (x, t)dxdt, (6.5.28)

where δk(x) = k1(x)−k2(x) and the functionϕ(x, t) = ϕ(x, t; q) solves the adjoint
problem

⎧⎨
⎩

ϕt + (k1(x)ϕx )x = 0, (x, t) ∈ (0, l) × [0, T ),

ϕ(x, T ) = 0, x ∈ (0, l),
−k1(0)ϕx (0, t) = q(t), ϕx (l, t) = 0, t ∈ (0, T ),

(6.5.29)

with anarbitrary datumq ∈ H 1(0, T ) satisfying the consistency conditionq(T ) = 0.

Proof The function δu(x, t) := u1(x, t)−u2(x, t) solves the following initial bound-
ary value problem

⎧⎨
⎩

δut − (k1(x)δux )x = (δk(x)u2x (x, t))x , (x, t) ∈ �T ,

δu(x, 0) = 0; x ∈ (0, l),
−k1(0)δux (0, t) = δk(0)u2x (0, t), δux (l, t) = 0, t ∈ (0, T ),

(6.5.30)

where u2x (x, t) := ux (x, t; k2). Multiply both sides of Eq. (6.5.30) by an arbitrary
function ϕ ∈ L∞(0, T ; H 2(0, l)), with ϕt ∈ L∞(0, T ; L2(0, l)) ∩ L2(0, T ; H 1

(0, l)), integrate on �T and use integration by parts formula multiple times. Then
we get:

∫ l

0
(δu(x, t)ϕ(x, t))t=T

t=0 dx

−
∫ T

0
(k1(x)δux (x, t)ϕ(x, t) − k1(x)δu(x, t)ϕx (x, t))

x=l
x=0 dt

−
∫∫

�T

δu(x, t)[ϕt (x, t) + (k1(x)ϕx (x, t))x ]dxdt

= −
∫∫

�T

δk(x)u2x (x, t)ϕx (x, t)dxdt

+
(

δk(x)
∫ T

0
u2x (x, t)ϕ(x, t)dt

)x=l

x=0

.

The first left hand side integral is zero due to the initial and final conditions in
(6.5.30) and (6.5.29). At x = l, the terms under the second left hand side and
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the last right hand side integrals drop out due to the homogeneous Neumann con-
ditions. The third left hand side integral is also zero due to the adjoint equation
ϕt (x, t) + (k1(x)ϕx (x, t))x = 0. Taking into account the nonhomogeneous Neu-
mann conditions in (6.5.29) and (6.5.30) we conclude that

−
∫ T

0
δk(0)u2x (0, t)ϕ(0, t)dt +

∫ T

0
δu(0, t)q(t)dt

= −
∫∫

�T

δk(x)u2x (x, t)ϕx (x, t)dxdt −
∫ T

0
δk(0)u2x (0, t)ϕ(0, t)dt.

Since the first left hand side and the last right side integrals are equal, we arrive at
the required integral relationship. �

Now we use the integral relationship (6.5.28) to derive the Fréchet gradient J ′(k)
of the Tikhonov functional

J (k) = 1

2
‖�[k] − f ‖2L2(0,l) , k ∈ K, (6.5.31)

where f ∈ L2(0, l) is the noise free measured output. Let u(x, t; k) and u(x, t; k +
δk) be the solutions of the direct problem (6.5.1) corresponding to the coefficients
k, k + δk ∈ K. Calculating the increment δJ (k) := J (k + δk) − J (k) of functional
(6.5.31) we get:

δJ (k) =
∫ T

0
[u(0, t; k) − f (t)]δu(0, t; k)dt + 1

2
‖δu(0, ·; k)‖2L2(0,T ), (6.5.32)

for all k, k + δk ∈ K. Now we use Lemma 6.5.3, taking k1(x) = k(x) + δk(x) and
k2(x) = k(x). Then δu(0, t; k) := u(0, t; k+δk)−u(0, t; k). Choosing the arbitrary
input q ∈ H 1(0, T ) in the adjoint problem (6.5.28) as q(t) := −[u(0, t; k) − f (t)]
we deduce from the integral relationship (6.5.28) that

∫ T

0
[u(0, t; k) − f (t)]δu(0, t; k)dt

=
∫∫

�T

δk(x)ux (x, t; k)ϕx (x, t; k + δk)dxdt, (6.5.33)

where the function ϕ(x, t; k1), k1(x) := k(x) + δk(x) is the solution of the adjoint
problem

⎧⎨
⎩

ϕt + (k1(x)ϕx )x = 0, (x, t) ∈ (0, l) × [0, T ),

ϕ(x, T ) = 0, x ∈ (0, l),
−k1(0)ϕx (0, t) = −[u(0, t; k) − f (t)], ϕx (l, t) = 0, t ∈ (0, T ).

(6.5.34)
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Using the integral relationship (6.5.33) in the right hand side of the increment formula
(6.5.32) we deduce that

δJ (k) =
∫ l

0

(∫ T

0
ux (x, t; k)ϕx (x, t; k + δk)dt

)
δk(x)dx

+1

2

∫ T

0
[δu(0, t; k)]2dt, (6.5.35)

Estimate (6.5.16) implies that

‖δu(0, t; k)‖2L2(0,T ) ≤ McC
2
2 ‖g‖2L2(0,l)‖δk‖2C[0,l], Mc,C2 > 0, (6.5.36)

i.e. the second right hand side integral in (6.5.35) is of the order O (‖δk‖2C[0,l]
)
.

Corollary 6.5.3 For the Fréchet gradient J ′(k) of the Tikhonov functional (6.5.31)
corresponding to the inverse coefficient problem (6.5.1) and (6.5.2) the following
gradient formula holds:

J ′(k)(x) =
∫ T

0
ux (x, t; k)ϕx (x, t; k)dt, k ∈ K, (6.5.37)

where u(x, t; k) and ϕ(x, t; k) are the solutions of the direct problem (6.5.1) and the
adjoint problem (6.5.34) corresponding to the coefficient k ∈ K.

By definition (6.5.26), the gradient formula for the regularized form of the
Tikhonov functional is as follows:

J ′
α(k)(x) = (ux (x, ·; k),ϕx (x, ·; k))L2(0,T ) + αk ′(x), k ∈ K, (6.5.38)

for a.e. x ∈ [0, l].

6.5.4 Reconstruction of an Unknown Coefficient

Having now the explicit gradient formulae (6.5.37) and (6.5.38) we may use the
Conjugate Gradient Algorithm (CG-algorithm) to the inverse coefficient problem
(6.5.1) and (6.5.2). However, the version of this algorithm described in Sect. 2.4
cannot be used in this case, since the formula

βn :=
(
J ′(p(n)), p(n)

)
‖�p(n)‖2
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for the descent direction parameter βn will not work. The reason is that the input-
output mapping corresponding to the inverse problem (6.5.1) and (6.5.2) in defined
only for positive functions 0 < c0 ≤ k(x) ≤ c1 and the function p(n)(x) in ‖�p(n)‖2
may not be positive. As an equivalent alternative, the descent direction parameter
βn > 0 will be defined from the minimum problem

Fn(βn) := inf
β>0

Fn(β), Fn(β) := J (k(n) − β J ′(k(n))), (6.5.39)

for each n = 0, 1, 2, . . . , as in Lemma 3.4.4 of Sect. 3.4.
Thus, the following version of the CG-algorithm is used below in numerical

solving of the inverse coefficient problem (6.5.1) and (6.5.2).

Step 1. For n = 0 choose the initial iteration k(0)(x).
Step 2. Compute the initial descent direction p(0)(x) := J ′(k(0))(x).
Step 3. Find the descent direction parameter from (6.5.39).
Step 4. Find next iteration k(n+1)(x) = k(n)(x) − βn p(n)(x) and compute the con-

vergence error

e(n; k(n); δ) := ‖ f δ − u(0, t; k(n))‖L2(0,T )

Step 5. If the stopping condition

e(n; k(n); δ) ≤ τMδ < e(n; k(n−1); δ), τM > 1, δ > 0 (6.5.40)

holds, then go to Step 7.
Step 6. Set n := n + 1 and compute

{
p(n)(x) := J ′(k(n))(x) + γn p(n−1)(x),

γn = ‖J ′(k(n))‖2
‖J ′(k(n−1))‖2

and go to Step 3.
Step 7. Stop the iteration process.

In the casewhen the algorithm is applied to the regularized formof theTikhonov func-
tional (6.5.26), which gradient is defined by formula (6.5.38), one needs to replace
in the above algorithm J (k(n)) and J ′(k(n)) with Jα(k(n)) and J ′

α(k(n)), respectively.
For discretization and numerical solution of the direct problem (6.5.1) as well as

the adjoint problem (6.5.34) the finite element algorithm with piecewise quadratic
Lagrange basis functions, introduced in Sect. 3.4.1, is used. These schemes with
composite numerical integration formula are also used for approximating the spatial
derivatives ux (x; t; k) and ϕx (x; t; k) in the gradient formulas (6.5.37) and (6.5.38).

In the examples below the finer mesh with the mesh parameters Nx = 201 and
Nt = 801 are used to generate the noise free synthetic output data. For this mesh

http://dx.doi.org/10.1007/978-3-319-62797-7_3
http://dx.doi.org/10.1007/978-3-319-62797-7_3
http://dx.doi.org/10.1007/978-3-319-62797-7_3
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the computational noise level is estimated as 10−4. With this accuracy the synthetic
output data f is assumed noise-free. Coarser mesh with the parameters Nx = 51
and Nt = 101 is used in the numerical solution of the inverse problem, to avoid of
inverse crime.

The noisy output data f δ , with ‖ f − f δ‖L2
h(0,T ) = δ, is generated by employing

the “randn" function in MATLAB, that is,

uδ
T,h(x) = uT,h(x) + γ‖uT,h‖L2

h(0,1)
randn(N ),

where γ > 0 is the MATLAB noise level. Remark that γ > 0 and δ > 0 are of the
same order. The parameter τM > 1 in the stopping condition (6.5.40) is taken below
as τM = 1.05 ÷ 1.07, where n is the iteration number. We will employ also the
accuracy error defined as

E(n; k(n); δ) := ‖k − k(n)‖L2(0,T ),

for performance analysis of the CG-algorithm.
In the examples below, we represent attempts to capture performance charac-

teristics of the CG-algorithm not only in the case when the initial datum and the
Neumann boundary datum at x = l are homogeneous, but also in the case when the
direct problem is given in the general form:

⎧⎨
⎩
ut (x, t) = (k(x)ux (x, t))x , (x, t) ∈ �T ,

u(x, 0) = h(x), 0 < x < l,
−k(0)ux (0, t) = g0(t), − k(0)ux (l, t) = g1(t), 0 < t < T .

(6.5.41)

In this case the input data must satisfy the following consistency conditions hold:

{
g0(0) = −k(0)h′(0),
g1(0) = −k(l)h′(l),

due to the regularity of the solution. Since the fluxes g0(t) and g1(t) at the endpoints
initially are assumed to be positive and since k(x) ≥ c1 > 0, the above consistency
conditions imply that

{
g0(t) > 0, g1(t) > 0, for all t ∈ [0, T ],
h′(0) < 0, h′(l) < 0.

(6.5.42)

On the other hand, these conditions allow to find the values k(0) and k(1) of the
unknown coefficients at the endpoints:

{
k(0) = −g0(0)/h′(0), h′(0) < 0
k(l) = −g1(0)/h′(l), h′(l) < 0.

(6.5.43)
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Fig. 6.2 The reconstructed coefficients for different values of the iteration number n (left figure)
and behaviour of the convergence and accuracy errors depending on n (right figure): noise free data,
for Example 6.5.1

This, in turn, permits to use the function k(0)(x) = (k(0)(l − x) + k(l)x) / l, i.e.
the linear approximation of k(x), as an initial iteration in the CG-algorithm, also.
Otherwise, i.e. in the case when g1(t) ≡ 0, h(x) ≡ 0 and g0(t) satisfies conditions
(6.5.3), i.e. g0(t) > 0, for all t ∈ (0, T ) and g0(0) = 0, any constant function
k(0)(x) = k0, c0 ≤ k0 ≤ c1 can be taken as an initial iteration, where c0 > 0 and
c1 > 0 are lower and upper bounds for the coefficient k(x). Note that an initial
iteration has indistinguishable effect on the reconstruction quality, as computational
experiments show. Only the attainability of the stopping criterion (6.5.40) becomes
faster. Finally, remark that reasonable values for the parameter of regularization
α > 0 in the examples belowwere determined by numerical experiments on carefully
chosen examples, of course, taking into account the convergence conditions (6.5.27).

Example 6.5.1 Performance characteristics of the CG-algorithm: noise free output
data

The synthetic output datum f (t) in this example is generated from the numerical
solution of the direct problem (6.5.1) for the given k(x) = 1 + 0.5 sin(3πx/2),
x ∈ [0, 1], with the source g(t) = 20 exp(−300(t − 0.25)2), t ∈ [0, T ], T = 0.5,
where g(0) ≈ 1.44×10−7. The initial iteration here is taken as k(0)(x) = 1, x ∈ [0, l].

The right Fig. 6.2 shows the behaviour of the convergence error (bottom curve) and
the accuracy error (upper curve) depending on the iteration numbern. It is clearly seen
that the accuracy error E(n; k(n); δ) remains almost the sameafter 30÷35th iterations,
although the convergence error e(n; k(n); δ) still decreased after 80 iterations. For
some values of the iteration number n these errors are reported in Table6.1. The
reconstructed coefficients k(n)(x) from noise free data are plotted in the left Fig. 6.2,
for the iteration numbers n = 10; 50; 100. It is seen that after 50 iterations the
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Table 6.1 Errors depending on the number of iterations n: noise free output data (δ = 0), for
Example 6.5.1

n e(n; α; γ) E(n; α; γ)

25 1.90 × 10−3 5.26 × 10−2

50 2.39 × 10−4 4.94 × 10−2

75 1.75 × 10−4 4.70 × 10−2

100 1.36 × 10−4 4.71 × 10−2
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Fig. 6.3 The reconstructed coefficient from noisy data with and without regularization: left figure,
for Example 6.5.2 and the right figure, for Example 6.5.3

reconstructions are almost the same. In all these reconstructions the CG-algorithm
is applied without regularization (α = 0). �

Example 6.5.2 Reconstruction of an unknown coefficient from noisy data with and
without regularization

In this example the reconstruction of the function k(x) = 1 + 0.5 sin(3πx/2), x ∈
[0, 1], is considered in the case when the inputs in the direct problem (6.5.41) are
g0(t) = 10 exp(−300(t − 0.04)2), g0(t) = 20 exp(−300(t − 0.02)2), t ∈ [0, T ],
T = 0.5, and h(x) = Ax2 + Bx , x ∈ [0, 1]. For the Neumann data g0(0) ≈ 6.1878
and g1(0) ≈ 17.7384, and the parameters A and B in initial datum h(x) is chosen
from the consistency conditions: h′(0) = −g0(0)/k(0), h′(1) = −g1(0)/k(1). We
have: h(x) = (1/2)[h′(1) − h′(0)]x2 + h′(0)x . The CG-algorithm is applied to the
inverse problem defined by (6.5.41) and (6.5.2) with the initial iteration k(0)(x) =
(k(0)(l − x) + k(l)x) / l. The reconstructed coefficients from noise free and noisy
data are plotted in the left Fig. 6.3. In the noise-free case the reconstructed coefficient
almost coincides with the exact one. Influence of the parameter of regularization
α > 0 on accuracy of reconstruction is seen from the plots in the left Fig. 6.3.
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Table 6.2 Errors obtained for noise free and noisy output data, for Example 6.5.2

δ, α iteration e(n; α; γ) E(n; α; γ)

δ = 0 86 1.40 × 10−3 4.28 × 10−2

δ = 3%, α = 0 3 9.75 × 10−2 1.46 × 10−1

δ = 3%,
α = 5.0 × 10−2

3 1.03 × 10−1 1.59 × 10−1

Table 6.3 Errors in the reconstruction of Gaussian, for Example 6.5.3

δ, α n e(n; α; γ) E(n; α; γ)

δ = 0 41 6.70 × 10−3 2.05 × 10−1

δ = 1%, α = 0 9 1.89 × 10−2 1.56 × 10−1

δ = 1%,
α = 5.0 × 10−2

55 1.95 × 10−2 2.98 × 10−1

The values of the convergence and accuracy errors are given in Table6.2. In the
case of noisy data the iteration numbers n in this table is determined by the stopping
condition (6.5.40) with τM = 1.05. �

Example 6.5.3 Reconstruction of Gaussian from noisy data with and without regu-
larization

In this final example, we use input data from the previous example for the reconstruc-
tion of the k(x) = 1+ exp(−(x −0.5)2/(2σ2))/(σ

√
2π), with mean σ = 0.3, in the

inverse coefficient problem defined by (6.5.41) and (6.5.2). The constant k(0)(x) = 2
is used as an initial iteration. The reconstructed coefficients from noise free and noisy
data are plotted in the right Fig. 6.3. Table6.3 reports the values of the convergence
and accuracy errors with the iteration numbers n. �

We remark finally that, in all examples the regularization effect on the accuracy
of the obtained reconstructions was negligible. That is, an accuracy of the numerical
solution obtained by CG-algorithm has slightly improved due to the regularization,
but at the expense of the number of iterations, as Table6.3 shows.

6.6 Identification of a Leading Coefficient in Heat
Equation: Neumann Type Measured Output

In the preceding section we studied the inverse coefficient problem when Dirichlet
data is given as a measured output. However, the most significant case in applications
arises when the heat flux f (t) := k(0)ux (0, t; k), i.e. the Neumann type datum is
given an available measured output. This is an important, but more complicated
case since the output k(0)ux (0, t; k) contains the derivative which is a source of an
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additional ill-posedness. While the study of coefficient identification problems for
evolution equations with Dirichlet type measured output is comprehensive enough,
to the best of our knowledge, only a few results are known for these problems with
Neumann type measured output. Applying the methodology given in §5.5 to the
inverse coefficient problem for heat equation with Neumann type measured output,
we will also emphasize some distinctive features of this problem.

Consider the inverse problem of identifying the leading coefficient k(x) in

⎧⎨
⎩
ut (x, t) = (k(x)ux (x, t))x + F(x, t), (x, t) ∈ �T ,

u(x, 0) = u0(x), 0 < x < l,
u(0, t) = 0, ux (l, t) = 0, 0 < t < T,

(6.6.1)

from the Neumann type measured output f (t) at the left boundary x = 0 of a
nonhomogeneous rod:

f (t) := k(0)ux (0, t), t ∈ [0, T ]. (6.6.2)

At the first stage, to guarantee, for instance, the existence of the regular weak
solution of the direct problem (6.6.1) assume that the functions k(x), F(x, t) and
u0(x) satisfy the following conditions:

⎧⎪⎪⎨
⎪⎪⎩
k ∈ H 1(0, l), 0 < c0 ≤ k(x) ≤ c1 < ∞;
Ft ∈ L2(0, T ; L2(0, l)), ∃ F(·, 0+) ∈ L2(0, l);
F(x, t) > 0, (x, t) ∈ �T ;
u0 ∈ H 2(0, l), u0(0) = 0, u′

0(l) = 0.

(6.6.3)

The condition F(x, t) > 0 here means that heating within the rod is considered.
u0(0) = 0 and u′

0(l) = 0 are the consistency conditions.
Under conditions (6.6.3) the initial boundary value problem (6.6.1) has the unique

regular weak solution

⎧⎨
⎩
u ∈ L∞(0, T ; H 2(0, l)),
ut ∈ L∞(0, T ; L2(0, l)) ∩ L2(0, T ; H 1(0, l)),
utt ∈ L2(0, T ; H−1(0, l)),

(6.6.4)

with improved regularity ([24], Sect. 7.1, Theorem 5).
Initially, we define the set of admissible coefficients as in Sect. 6.5.2:

K := {k ∈ H 1(0, l) : 0 < c0 ≤ k(x) ≤ c1 < ∞}. (6.6.5)

We will show below that for the considered inverse problem (6.6.1) and (6.6.2) this
set of admissible coefficients is not enough due to the Neumann type measured output
(6.6.2). Specifically, wewill prove that, different from the inverse coefficient problem
considered in the preceding section, even regular weak solution is not enough for
solvability of inverse coefficient problem with Neumann type measured output.
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For a given coefficient k ∈ K we denote by u = u(x, t; k) the solution of the
direct problem (6.6.1) and introduce the input-output operator

{
�[k](t) := (k(x)ux (x, t; k))x=0+ ,

�[·] : K ⊂ H 1(0, l) �→ L2(0, T ).
(6.6.6)

Then we can reformulate the inverse coefficient problem (6.6.1) and (6.6.2) in the
following nonlinear operator equation form:

�[k](t) = f (t), t ∈ (0, T ]. (6.6.7)

Taking into account that the output f (t) contains measurement error, we introduce
the regularized form

Jα(k) = 1

2
‖�[k] − f ‖2L2(0,T ) + α

2
‖k ′‖2L2(0,T ), k ∈ K (6.6.8)

of the Tikhonov functional

J (k) = 1

2
‖�[k] − f ‖2L2(0,T ) , k ∈ K, (6.6.9)

where α > 0 is the parameter of regularization.
Therefore, for a noisy measured output the inverse coefficient problem (6.6.1) and

(6.6.2) can only be considered as a minimum problem for the regularized functional
(6.6.8) on the set of admissible coefficients K.

6.6.1 Compactness of the Input-Output Operator

We need some auxiliary results related to the regular weak solution of the direct
problem. Although some of the estimates below can be derived from those given in
Sect. 5.2 and in Appendix B.2, we derive them here for completeness.

Lemma 6.6.1 Let conditions (6.5.3) hold. Then for the regular weak solution of the
parabolic problem (6.6.1) the following estimates hold:

‖ut‖2L2(0,l) ≤
(
‖Ft‖2L2(0,T ;L2(0,l)) + 2C2

1

)
et , t ∈ [0, T ], (6.6.10)

‖uxt‖2L2(0,T ;L2(0,l)) ≤ 1

2c0

(
‖Ft‖2L2(0,T ;L2(0,l)) + 2C2

1

)
eT , (6.6.11)

where

C2
1 = ‖F(·, 0+)‖2L2(0,l) + ‖(k u′

0)
′‖2L2(0,l). (6.6.12)
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Proof Differentiate (formally) Eq. (6.6.1) with respect to t ∈ (0, T ), multiply both
sides by ut (x, t), integrate on �t := (0, l) × (0, t) and use the integration by parts
formula. Taking then into account the initial and boundary conditions we obtain the
following integral identity:

∫ l

0
|ut |2dx + 2

∫ t

0

∫ l

0
k(x)|uxτ |2dxdτ

= 2
∫ t

0

∫ l

0
Fτuτdxdτ +

∫ l

0
|ut (x, 0+)|2dx, t ∈ [0, T ]

We use the limit equation ut (x, 0+) = (k(x)ux (x, 0+))x + F(x, 0+) to estimate the
last right hand side integral. Squaring both sides of this equation, using the identity
(a + b)2 ≤ 2a2 + 2b2 and then integrating over [0, l] we deduce:

∫ l

0
|ut (x, 0+)|2dx ≤ 2

∫ l

0

(
(k(x)u′

0)
′)2 dx + 2

∫ l

0
|F(x, 0+)|2dx .

Substituting this in above integral identity we conclude that

∫ l

0
|ut |2dx + 2

∫ t

0

∫ l

0
k(x)|uxτ |2dxdτ ≤ 2

∫ t

0

∫ l

0
Fτ uτdxdτ + 2C2

1 , (6.6.13)

for all t ∈ [0, T ], where the constant C1 > 0 is defined by (6.6.12).
The first consequence of (6.6.13) is the inequality

∫ l

0
|ut |2dx ≤ 2

∫ t

0

∫ l

0
Fτuτdxdτ + 2C2

1 ,

which implies:

∫ l

0
|ut |2dx ≤

∫ t

0

∫ l

0
|ut |2dxdτ +

∫ t

0

∫ l

0
|Fτ |2dxdτ + 2C2

1 , t ∈ [0, T ].

Applying the Gronwall-Bellman inequality after elementary transformations we
arrive at the required first estimate (6.6.10).

As a second consequence of (6.6.13) we get the inequality:

c0

∫ T

0

∫ l

0
|uxt |2dxdt ≤

∫ T

0

∫ l

0
Ft utdxdt + C2

1 ,

which by the inequality ab ≤ (a2 + b2)/2 yields:

c0

∫ T

0

∫ l

0
|uxt |2dxdt ≤ 1

2

∫ T

0

∫ l

0
|ut |2dxdt + 1

2

∫ T

0

∫ l

0
|Ft |2dxdt + C2

1 .
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The required second estimate (6.6.11) easily is obtained from this inequality after
elementary transformations, taking into account estimate (6.6.10). �

As will be seen below, we need to estimate the norm ‖utt‖2L2(0,T ;L2(0,l)). This

requires higher regularity of the regular weak solution, in particular, utt ∈ L2(0, T ;
L2(0, l)). If, in addition to conditions (6.6.3), the condition u0 ∈ H 3(0, l) ∩ V(0, l)
holds, then by Theorem 6 in ([24], Sect. 7.1) the weak solution u ∈ L2(0, T ; H 4

(0, l)) ∩ L2(0, T ;V(0, l)), ut ∈ L∞(0, T ; H 2(0, l)), utt ∈ L2(0, T ; L2(0, l)) of the
parabolic problem (6.6.1) with higher regularity exists and unique.

Lemma 6.6.2 Let conditions (6.6.3) hold. Assume, in addition, that the inputs k(x),
F(x, t) and u0(x) satisfy the following conditions:

⎧⎨
⎩
k ∈ H 2(0, l);
∃ Fx (·, 0+) ∈ L2(0, l);
u0 ∈ H 3(0, l) ∩ V(0, l).

(6.6.14)

Then for the regular weak solution of the parabolic problem (6.6.1) the following
estimate holds:

‖utt‖2L2(0,T ;L2(0,l)) ≤ ‖Ft‖2L2(0,T ;L2(0,l)) + 4c1 C
2
2 (6.6.15)

‖uxt‖2L2(0,T ;L2(0,l)) ≤ 1

c0
‖Ft‖2L2(0,T ;L2(0,l)) + 4c1

c0
C2
2 . (6.6.16)

where c0, c1 > 0 are the constants defined in (6.6.3) and

C2
2 = ‖Fx (·, 0+)‖2L2(0,l) + ‖ (

k u′
0

)′′ ‖2L2(0,l). (6.6.17)

Proof Differentiating equation (6.6.1) with respect to t ∈ (0, T ), multiplying both
sides by utt (x, t), integrating over�t := (0, l)× (0, t] and using then the integration
by parts formula we obtain:

2
∫∫

�t

|uττ |2dxdt +
∫ l

0
k(x)|uxt |2dx

= 2
∫∫

�t

Fτuττdx + 2
∫ t

0
(k(x)uxτuττ )

x=l
x=0 dτ +

∫ l

0
k(x)|uxt (x, 0

+)|2dx .

By the homogeneous boundary conditions (6.6.1) the second right hand side integral
is zero. Using the inequality 2ab ≤ a2 + b2 in the first right hand side integral after
transformation we deduce:∫ t

0

∫ l

0
|uττ |2dxdτ + c0

∫ l

0
|uxt |2dx

≤
∫ T

0

∫ l

0
|Ft |2dxdτ + 2

∫ l

0
k(x)|uxt (x, 0

+)|2dx . (6.6.18)
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To estimate the second right hand side integral we use conditions (6.6.14). We
have: ∫ l

0
k(x)|uxt (x, 0

+)|2dx ≤ c1

∫ l

0

[
(k(x)ux (x, 0

+))xx + Fx (x, 0
+)

]2
≤ 2c1

∫ l

0

(
k(x)u′

0(x)
′′)2 dx + 2c1

∫ l

0
|Fx(x, 0

+)|2dx .

With (6.6.18), this implies the required first estimate (6.6.15) with the constantC2 >

0 defined by (6.6.17).
The second estimate (6.6.16) can be obtained in the same way. �

Now we are able to prove the compactness lemma.

Lemma 6.6.3 Let conditions (6.6.3) and (6.6.14) hold. Then the input-output oper-
ator �[·] : Kc ⊂ H 2(0, l) �→ L2(0, T ) defined by (6.6.6) is a compact operator on
the set of admissible coefficients

Kc := {k ∈ H 2(0, l) : 0 < c0 ≤ k(x) ≤ c1 < ∞}. (6.6.19)

Proof Let {km} ⊂ Kc, m = 1,∞, be a bounded sequence of coefficients in Kc.
Denote by {um(x, t)}, um(x, t) := u(x, t; km), the sequence of corresponding regular
weak solutions of the direct problem (6.6.1). Then {km(0)ux (0, t; km)} is the sequence
of outputs. We need to prove that this sequence is a relatively compact subset of
L2(0, T ) or, equivalently, the sequence {km(0)um(0, t)} is bounded in the norm of
the Sobolev space H 1(0, T ).

By the homogeneous Neumann condition in (6.6.1) we have:

∫ T

0

(
km(0)um,x (0, t)

)2
dt =

∫ T

0

(∫ l

0
(km(x)um,x (x, t))xdx

)2

dt.

Using now the equation (km(x)um,x (x, t))x = um,t (x, t) − F(x, t) we obtain:

∫ T

0

(
km(0)um,x (0, t)

)2
dt

≤ 2l

{∫ T

0

∫ l

0
|um,t (x, t)|2dxdt +

∫ T

0

∫ l

0
|F(x, t)|2dxdt

}
.

By estimate (6.6.10) we conclude the sequence {km(0)um,x (0, t)} is bounded in
L2(0, T ). We prove now that the sequence {km(0)um,xt (0, t)} is also bounded in
the norm of L2(0, T ). Applying the similar technique we deduce:

alemd
Highlight

alemd
Sticky Note
u_{x,m}
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∫ T

0

(
km(0)um,xt (0, t)

)2
dt

≤ 2l

{∫ T

0

∫ l

0
|um,t t (x, t)|2dxdt +

∫ T

0

∫ l

0
|Ft(x, t)|2dxdt

}
.

The boundedness of the right hand side follows from estimate (6.6.15). This com-
pletes the proof of the lemma. �

Remark 6.6.1 In Sect. 5.5.2 we have proved that the input-output operator �[·] :
K ⊂ H 1(0, l) �→ L2(0, T ) corresponding to the inverse coefficient problem with
Dirichlet output is compact if D(�) := K ⊂ H 1(0, l) and K is defined by (6.6.5)
as a subset of H 1(0, l). But Lemma 6.6.3 asserts that in the case of Neumann output
the input-output operator �[·] : K ⊂ H 1(0, l) �→ L2(0, T ) can not be compact if
D(�) ⊂ H 1(0, l). Namely, it is compact if onlyD(�) := Kc ⊂ H 2(0, l), whereKc

is defined by (6.6.19) as a subset of H 2(0, l). Taking into account the compactness
of the embedding H 2(0, l) ↪→ H 1(0, l), we deduce that in the case of Neumann
output the input-output operator � is compact, if only it is defined on a compact set
of the Sobolev space H 1(0, l).

6.6.2 Lipschitz Continuity of the Input-Output Operator
and Solvability of the Inverse Problem

To prove the Lipschitz continuity of the input-output operator �[·] : Kc ⊂
H 2(0, l) �→ L2(0, T ), first we need the following auxiliary result.

Lemma 6.6.4 Let conditions (6.6.3) and (6.6.14) hold. Denote by u(x, t; k1) and
u(x, t; k2) the regular weak solutions of the direct problem (6.6.1) corresponding
to the admissible coefficients k1, k2 ∈ K, respectively. Then the following estimate
holds:

‖ut (·, ·; k1) − ut (·, ·; k2)‖2L2(0,T ;L2(0,l))

≤ T

c20

[
‖Ft‖2L2(0,T ;L2(0,l)) + 4c1 C

2
2

]
‖k1 − k2‖2C[0,l]

+T ‖((k1 − k2) u
′
0)

′‖2L2(0,l). (6.6.20)

where c0, c1 > 0 are the constants defined in (6.6.3) and C2 > 0 is the constant
defined by (6.6.17).

http://dx.doi.org/10.1007/978-3-319-62797-7_5
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Proof For simplicity,we introduce the functionbyv(x, t) := u(x, t; k1)−u(x, t; k2).
Evidently this function solves the following initial boundary value problem:

⎧⎨
⎩

vt = (k1(x)vx )x + (δk(x)u2x )x , (x, t) ∈ �T ,

v(x, 0) = 0, 0 < x < l,
v(0, t) = 0, vx (l, t) = 0, 0 < t < T,

(6.6.21)

where ui (x, t) := u(x, t; ki ), i = 1, 2 and δk(x) = k1(x) − k2(x). Differentiate
equation (6.6.21) with respect to t ∈ (0, T ), multiply both sides by vt (x, t) and then
integrate over the domain �t . Applying then the integration by parts formula and
using the homogeneous boundary conditions in (6.6.1) and the homogeneous initial
condition in (6.6.21) we obtain

∫ l

0
|vt |2dx + 2

∫∫
�t

k1(x)|vxτ |2dxdτ

= −2
∫∫

�t

δk(x)u2xτvxτdxdτ +
∫ l

0
|vt (x, 0+)|2dx, t ∈ [0, T ].

Applying the ε-inequality 2ab ≤ (1/ε)a2 + εb2 to the first right hand side integral
and using the limit equation

∫ l

0
|vt (x, 0+)|2dx =

∫ l

0

[
(δk(x)u′

0(x))
′]2 dx

the second right hand side integral we conclude that

‖vt‖2L2(0,l) + (2c0 − ε)‖vxτ‖2L2(0,t;L2(0,l))

≤ 1

ε
‖δk‖2C[0,l] ‖u2xτ‖2L2(0,t;L2(0,l)) + ‖(δk u′

0)
′‖2L2(0,l),

for all t ∈ [0, T ], ε > 0. Choosing here ε = c0 > 0 and integrating then both sides
over (0, T ) we deduce the estimate:

‖vt‖2L2(0,T ;L2(0,l)) ≤ T

c0
‖δk‖2C[0,l] ‖u2xt‖2L2(0,T ;L2(0,l)) + T ‖(δk u′

0)
′‖2L2(0,l),

With estimate (6.6.16) this yields the required estimate (6.6.20). �

Corollary 6.6.1 Let conditions of Lemma 6.6.4 hold. Then the following estimate
holds:

‖ut (·, ·; k1) − ut (·, ·; k2)‖2L2(0,T ;L2(0,l)) ≤ M2
L‖k1 − k2‖2H 1(0,l), (6.6.22)
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where

M2
L = max

{
M2

C T

c20

[
‖Ft‖2L2(0,T ;L2(0,l)) + 4c1 C

2
2

]
;

T
[‖u′‖2C[0,l] + ‖u′′‖2C[0,l]

]}
, (6.6.23)

MC > 0 is the constant in the estimate ‖k‖2C[0,l] ≤ MC‖k‖H 2(0,l), c0, c1 > 0 are the
constants defined in (6.6.3) and C2 > 0 is the constant defined by (6.6.17).

Proof We use the inequality (a1b1 + a2b2)2 ≤ (a21 + a2)(b21 + b22) to estimate the
last right hand side norm in (6.6.20) as follows:

∫ l

0

[
((k1(x) − k2(x)) u

′
0(x))

′]2 dx
≤

∫ l

0

[
(u′

0(x))
2 + (u′′

0(x))
2] [

(k1(x) − k2(x))
2 + (k ′

1 − k ′
2)

2] dx
≤ [‖u′‖2C[0,l] + ‖u′′‖2C[0,l]

] ‖k1 − k2‖2H 1(0,l).

Using this in estimate (6.6.20) we obtain estimate (6.6.22) with the constant MC > 0
defined by (6.6.23). �

Having Corollary 6.6.1 we can prove the Lipschitz continuity of the input-output
operator �[·] : Kc ⊂ H 2(0, l) �→ L2(0, T ) corresponding to the inverse coefficient
problem with Neumann data.

Theorem 6.6.1 Let conditions (6.6.3) and (6.6.14) hold. Then the input-output oper-
ator �[·] : Kc ⊂ H 2(0, l) �→ L2(0, T ) is Lipschitz continuous, that is,

‖�[k1] − �[k2]‖L2(0,T ) ≤ L� ‖k1 − k2‖H 1(0,l), (6.6.24)

where L� = √
l MC is the Lipschitz constant and MC > 0 is defined by (6.6.23).

Proof Let um(x, t) := u(x, t; km), m = 1, 2 be two solutions of the direct problem
(6.6.1). Integrating these equations over (0, l) and using the homogeneous Neumann
condition we find:

−ki (0)um,x (0, t) =
∫ l

0
um,t (x, t)dx −

∫ l

0
F(x, t)dx, m = 1, 2.

This yields:

[k1(0)u1,x (0, t) − k2(0)u2,x (0, t)]2 =
{∫ l

0
[u1,t (x, t) − u2,t (x, t)]dx

}2

≤ l
∫ l

0

[
u1,t (x, t) − u2,t (x, t)

]2
dx . (6.6.25)



200 6 Inverse Problems for Parabolic Equations

Hence,

‖�[k1] − �[k2]‖2L2(0,T ) :=
∫ T

0
[k1(0)u1,x (0, t) − k2(0)u2,x (0, t)]2dt

≤ l
∫ T

0

∫ l

0

(
u1,t (x, t) − u2,t (x, t)

)2
dxdt.

With estimate (6.6.22) this yields the assertion of the theorem. �

Thus, Lemma 6.6.3 and Theorem 6.6.2 assert that if the set of admissible coef-
ficients Kc is defined by (6.6.19) as a subset of the Sobolev space H 2(0, l) and the
input-output operator �[k] := (k(x)ux (x, t; k))x=0 is defined from Kc ⊂ H 2(0, l)
to L2(0, l), then this operator is compact and Lipschitz continuous. Hence, we can
apply Theorem 6.5.2 from preceding section to the inverse coefficient problem with
Neumann data.

Theorem 6.6.2 Let conditions (6.6.3) and (6.6.14) hold. Then for any α > 0, the
functional (6.6.8) attains a minimizer kδ

α ∈ Kc ⊂ H 2(0, l).

Also, assuming injectivity of the input-output operator, we can apply the regu-
larization Theorem 6.5.3 to the inverse coefficient problem (6.6.1) and (6.6.2) with
noisy measured output.

6.6.3 Integral Relationship and Gradient Formula

Having above mathematical framework we only need to derive the Fréchet gradient
J ′(k) of the Tikhonov functional (6.6.9) for subsequent application of the Conjugate
Gradient Algorithm given in Sect. 6.5.4

Let k1, k2 ∈ Kc be admissible coefficients, um(x, t) := u(x, t; km) the corre-
sponding solutions of the direct problem (6.6.1) and km(0)ux (0, t; km), m = 1, 2,
Neumann outputs. We derive first an important integral relationship relating the
change δk(x) := k1(x) − k2(x) in the coefficients to the change

k1(0)u1x (0, t) − k2(0)u2x (0, t) := k1(0)ux (0, t; k1) − k2(0)ux (0, t; k2)

in the Neumann outputs.

Lemma 6.6.5 Let conditions (6.6.3) and (6.6.14) hold. Denote by um(x, t) :=
u(x, t; km) and km(0)u(0, t; km) the solutions of the direct problem (6.6.1) and the
outputs, corresponding to the given admissible coefficients km ∈ Kc, m = 1, 2. Then
the following integral relationship holds:
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∫ T

0
[k1(0) u1x (0, t) − k2(0) u2x (0, t)]q(t)dt

= −
∫∫

�T

δk(x)u2x (x, t)ψx (x, t)dxdt, (6.6.26)

where δk(x) = k1(x)−k2(x) and the functionψ(x, t) = ψ(x, t; q) solves the adjoint
problem

⎧⎨
⎩

ψt + (k1(x)ψx )x = 0, (x, t) ∈ (0, l) × [0, T ),

ψ(x, T ) = 0, x ∈ (0, l),
ψ(0, t) = q(t), ψx (l, t) = 0, t ∈ (0, T ),

(6.6.27)

with an arbitrary input q ∈ H 1(0, T ) satisfying the consistency condition q(T ) = 0.

Proof The function δu(x, t) := u1(x, t)− u2(x, t) solves the initial boundary value
problem (6.6.21). Multiply both sides of Eq. (6.6.21) by an arbitrary function ψ ∈
L∞(0, T ; H 2(0, l)), with ψt ∈ L∞(0, T ; L2(0, l)) ∩ L2(0, T ;V), where V(0, l) :=
{v ∈ H 1(0, l) : v(0) = 0}, integrate on �T and use integration by parts formula
multiple times. Then we get:

∫ l
0 (δu(x, t)ψ(x, t))t=T

t=0 dx

− ∫ T
0 (k1(x)δux (x, t)ψ(x, t) − k1(x)δu(x, t)ψx (x, t))

x=l
x=0 dt

− ∫∫
�T

δu(x, t)[ψt (x, t) + (k1(x)ψx (x, t))x ]dxdt
= − ∫∫

�T
δk(x)u2x (x, t)ψx (x, t)dxdt

+
(
δk(x)

∫ T
0 u2x (x, t)ψ(x, t)dt

)x=l

x=0
.

(6.6.28)

The first left hand side integral in (6.6.28) is zero due to the initial and final condi-
tions in (6.6.21) and (6.6.27). At x = l, the terms under the second left hand side
and the last right hand side integrals drop out due to the homogeneous Neumann
conditions. The third left hand side integral is also zero due to the adjoint equation
ψt (x, t)+(k1(x)ψx (x, t))x = 0. Taking into account the nonhomogeneousNeumann
conditions in (6.6.21) and (6.6.27) with the condition ψ(0, t) = q(t) we conclude
that ∫ T

0 [k1(0)δux (0, t)q(t)]dt
= − ∫∫

�T
δk(x)u2x (x, t)ψx (x, t)dxdt − ∫ T

0 [δk(0)u2x (0, t)q(t)]dt.

Transforming the first and the last terms under the integrals we get:

k1(0)δux (0, t)q(t) + δk(0)u2x (0, t)q(t)

:= k1(0)[u1x (0, t) − u2x (0, t)] + [k1(0) − k2(0)]u2x (0, t)
= k1(0) u1x (0, t) − k2(0) u2x (0, t),
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which is the change in Neumann outputs corresponding to the change δk ∈ Kc in
coefficients. Substituting this in the above integral relation we arrive at the desired
result. �

To obtain gradient formula, it is convenient to rewrite the integral relationship
(6.6.26) in terms of the increments δk(x) and δu(x, t; k) := u(x, t; k + δk) −
u(x, t; k). To this end, we assume that k1(x) := k(x) + δk(x), k2(x) := k(x)
and choose the arbitrary input q(t) in the adjoint problem (6.6.27) as q(t) =
−[k(0)ux (0, t; k) − f (t)]. Then we obtain from the above lemma the following
integral relationship which also plays a significant role in the numerical solution of
inverse coefficient problems [37].

Corollary 6.6.2 Let conditions of Lemma 6.6.5 hold. Assume that k, k + δk ∈ Kc

are the admissible coefficients, u(x, t; k), u(x, t; k+δk) the corresponding solutions
of the direct problem (6.6.1) and k(0)ux (0, t; k), (k(0) + δk(0))ux (0, t; k + δk)
Neumann outputs. Then the following integral relationship, relating the change δk ∈
Kc in the coefficients to the change

(k(0) + δk(0))ux (0, t; k + δk) − k(0)ux (0, t; k)

in the Neumann outputs, holds:

∫ T

0
[(k(0) + δk(0))ux (0, t; k + δk) − k(0)ux (0, t; k)][k(0)ux (0, t; k) − f (t)]dt

=
∫∫

�T

δk(x)ux (x, t; k)ψx (x, t; k + δk)dxdt, (6.6.29)

where ψx (x, t; k + δk) is the solution of the following adjoint problem:

⎧⎨
⎩

ψt + ((k(x) + δk(x))ψx )x = 0, (x, t) ∈ (0, l) × [0, T ),

ψ(x, T ) = 0, x ∈ (0, l),
ψ(0, t) = −[k(0)ux (0, t; k) − f (t)], ψx (l, t) = 0, t ∈ (0, T ).

Now we use the integral relationship (6.6.29) to derive the Fréchet gradient J ′(k)
of the Tikhonov functional (6.6.9).

Theorem 6.6.3 Let conditions (6.6.3) and (6.6.14) hold. Then the Tikhonov func-
tional (6.6.9) is Fréchet differentiable. Moreover, for the Fréchet gradient J ′(k) of
the Tikhonov functional the following gradient formula holds:

J ′(k)(x) =
∫ T

0
ux (x, t; k)ψx (x, t; k)dt, k ∈ Kc, (6.6.30)
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where ψx (x, t; k) is the solution of the adjoint problem

⎧⎨
⎩

ψt + (k(x)ψx )x = 0, (x, t) ∈ (0, l) × [0, T ),

ψ(x, T ) = 0, x ∈ (0, l),
ψ(0, t) = −[k(0)ux (0, t; k) − f (t)], ψx (l, t) = 0, t ∈ (0, T ).

Proof Calculate the increment δJ (k) := J (k+δk)−J (k) of the Tikhonov functional
(6.6.9). We have:

δJ (k) =∫ T
0 [(k(0) + δk(0))ux (0, t; k + δk) − k(0)ux (0, t; k)][k(0)ux (0, t; k) − f (t)]dt

+ 1
2

∫ T
0 [(k(0) + δk(0))ux (0, t; k + δk) − k(0)ux (0, t; k)]2dt.

Use here the integral relationship (6.6.29). Then we obtain:

δJ (k) = ∫ l
0

(∫ T
0 ux (x, t; k)ψx (x, t; k + δk)dxδ

)
k(x)dx

+ 1
2

∫ T
0 [(k(0) + δk(0))ux (0, t; k + δk) − k(0)ux (0, t; k)]2dt.

(6.6.31)

It follows from inequality (6.6.25) and estimate (6.6.20) that the second right hand
side integral in (6.6.31) is of the order O (‖δk‖2C[0,l]

)
. This completes the proof of

the theorem. �

It is seen that the gradient formula (6.5.37) corresponding to the inverse coefficient
problem with Dirichlet output, and the above gradient formula (6.6.30), correspond-
ing to the inverse coefficient problem with Neumann output, have exactly the same
form, although the functions ux (x, t; k) and ψx (x, t; k) are the solutions of different
direct and adjoint problems. This form of the gradients is convenient for computa-
tional experiments.



Chapter 7
Inverse Problems for Elliptic Equations

This chapter is an introduction to the basic inverse problems for elliptic equations.
One class of these inverse problems arises when the Born approximation is used for
scattering problem in quantum mechanics, acoustics or electrodynamics. In the first
part of this chapter two inverse problems, the inverse scattering problem at a fixed
energy and the inverse scattering problems at a fixed energy, are studied. The last
problem is reduced to the tomography problem which is studied in the next chapter.
In the second part of the chapter, the Dirichlet to Neumann operator is introduced. It
is proved that this operator uniquely defines the potential q(x) in�u(x) + q(x) = 0.

7.1 The Inverse Scattering Problem at a Fixed Energy

Consider the stationary Schrödinger equation

− �u + q(x)u = |k|2u, x ∈ R
3 (7.1.1)

of quantum mechanics at a fixed energy E = |k|2. We look for a solution of this
equation of the form:

u(x, k) = eik·x + v(x, k). (7.1.2)

Here q(x) is the potential and the vector k = (k1, k2, k3) defines the direction of the
incident plane wave eik·x . Function v(x, k) satisfies the radiation conditions

v = O (
r−1

)
,

∂v

∂r
− i|k|v = o

(
r−1

)
, as r = |x | → ∞. (7.1.3)
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The boundary value problem (7.1.1)–(7.1.3) will be referred below as the direct
problem.

Equations similar to (7.1.1) arise also in acoustics and electrodynamics. If q(x) =
0, then v(x, k) = 0. For q(x) �≡ 0 the solution to the direct problem (7.1.1)–(7.1.3)
defines a scattering wave on the potential. It is well known that the problem (7.1.1)–
(7.1.3) is well posed, if q(x) ∈ L∞(R3) and q(x) decreases sufficiently rapidly, as
r → ∞. So, it has the unique solution. For simplicity, we will assume here that the
potential q(x) is a finite function with the compact domain � ⊂ R

3, having smooth
boundary ∂�. Moreover, we assume that q(x) ∈ C(�) and q(x) = 0 for x ∈ ∂�.

It follows from (7.1.1) and (7.1.2) that the function v(x, k) satisfies the equation

− �v + q(x)(eik·x + v) = |k|2v, x ∈ R
3 (7.1.4)

and the conditions (7.1.3). On the other hand, v(x, k) is solution of the integral
equation

v(x, k) = − 1

4π

∫

�

q(y)(eik·y + v(y, k))ei|k||x−y|

|x − y| dy. (7.1.5)

Consider the asymptotic behavior of the function v(x, k), as |x | = r → ∞, so that
x/r = l/|k|, where l ∈ R

3 is an arbitrary vector with |l| = |k|. We have |x − y| =
r − (l · y)/|k| + o(r−1) uniformly for all y ∈ �. Then from (7.1.5) we get

v(x, k) = −ei|k|r

4πr

∫

�

q(y)(eik·y + v(y, k))e−il·y dy

+O
(
1

r2

)
, r → ∞. (7.1.6)

From (7.1.6) we see that v(x, k) can be represented in the form

v(x, k) = −ei|k|r

4πr
f (k, l) + O

(
1

r2

)
, r → ∞. (7.1.7)

The function f (k, l) is called the scattering amplitude.
The inverse scattering problem here is to determine the unknown coefficient q(x)

in (7.1.4) from given f (k, l) for all k and l, such that |k| = |l| = √
E . This version

of the problem is called the inverse scattering problem in the Born approximation.
This problem has been studied in the various papers and books (see, for example,

the books [17, 75, 84] and papers [25, 26, 41, 76, 77]).
Following [78], consider here the problem of a reconstruction of the potential

q(x) in the Born approximation using scattering amplitude at a fixed energy E . We
assume that q(x) is sufficiently small and we can neglect by the second order terms.
So we can use the linear approximation of the problem. It is seen form Eqs. (7.1.6)
and (7.1.7) that in this case the scattering amplitude is defined the following formula:
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f (k, l) =
∫

�

q(y)ei(k−l)·y dy = q̂(k − l), (7.1.8)

where q̂(λ) means the Fourier transform of the function q(x):

q̂(λ) =
∫

�

q(y)eiλ·y dy, λ ∈ R
3.

Note that the function f (k, l) is given for all k and l so that |k|2 = |l|2 = E
define q̂(λ) for all |λ| ≤ ρ0 = 2

√
E . Indeed, let λ = ρν(θ,ϕ), where ν(θ,ϕ) =

(sin θ cosϕ, sin θ sinϕ, cos θ). Define k, l by the formulae

k = 1
2

(
ρν(θ,ϕ) + √

4E − ρ2 νθ(θ,ϕ)
)

,

l = 1
2

(
−ρν(θ,ϕ) + √

4E − ρ2 νθ(θ,ϕ)
)

,
(7.1.9)

where νθ(θ,ϕ) = (cos θ cosϕ, cos θ sinϕ,− sin θ). Then for any λ, |λ| ≥ ρ0 we
have: k − l = λ and |k|2 = |l|2 = E . Hence, if the energy E is sufficiently large,
the Fourier image of q(x) is defined by the scattering amplitude for the large ball
Bρ0 = {λ ∈ R

3 : |λ| ≤ ρ0}. Since the Fourier transform of finite continuous function
is an analytical function, values of q̂(λ) inside the ball Bρ0 define uniquely q̂(λ), for
all λ ∈ R

3.
This conclusion leads to the following uniqueness theorem.

Theorem 7.1.1 Let the scattering amplitude f (k, l) in (7.1.7) is given at a fixed
energy for all k and l. Then the inverse scattering problem in the Born approximation
has at most an one solution.

Moreover, we can construct the approximate solution qappr (x) of the inverse
problem by following formula

qappr (x) = 1

(2π)3

∫

Bρ0

f (k, l)e−iρν(θ,ϕ)·x ρ2 dρ sin θdθdϕ, (7.1.10)

where k, l given by (7.1.9). The error of the approximation qerr (x) can be estimated
under some a-priory assumption on the function q(x). Let us assume, for example,
that the function q(x) with the compact support in �, contained in the ball centered
at the origin of radius R, belongs to Cm(R3), m > 3. Suppose that its norm satisfies
the condition: ‖q‖Cm (R3) ≤ q0. Then the Fourier image q̂(λ) of q(x) satisfies the
estimate:

|q̂(λ)| ≤ Cq0|λ|−m, |λ| ≥ ρ0, (7.1.11)

where C = C(R,m) > 0. Indeed,
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q̂(λ) =
∫

R3
q(x)eiρν·x dx =

∫ R

−R
Q(s, ν)eiρs ds. (7.1.12)

Here ν = ν(θ,ϕ) and Q(s, ν) is the Radon transform of q(x) given by formula

Q(s, ν) =
∫

ν·x=s
q(x) dσ,

where dσ is the square element. The variable x under the last integral can be derived
by the formula

x = sν + r
(
νθ cosφ + νϕ

sin θ
sin φ

)
, νθ = ∂ν

∂θ
, νϕ = ∂ν

∂ϕ
.

Substituting this with dσ = rdrdφ into the integral (7.1.12) we conclude that

q̂(λ) = (−1)m

(iρ)m

∫ R

−R

∂mQ(s, ν)

∂ρm
eiρs ds. (7.1.13)

Evidently,

∣∣
∣∣
∂mQ(s, ν)

∂ρm

∣∣
∣∣ ≤ Cq0,

with the above defined constant C = C(R,m), depending only on R and m. Using
this in (7.1.13) we arrive at the estimate (7.1.11).

Then the error of the approximation qerr (x) can be estimate as

|qerr (x)| ≤ 1
(2π)3

∫
R3\Bρ0

|q̂(λ)| ρ2 dρ sin θdθdϕ ≤ Cq0
2π2

∫ ∞

ρ0

dρ

ρm−2

≤ Cq0
2π2(m − 1)ρm−1

0

= Cq0
2π2(m − 1)E (m−1)/2

.

Therefore, the error of the approximate formula (7.1.10) tends to zero, as E → ∞.

7.2 The Inverse Scattering Problem with Point Sources

In the previous section we have studied the inverse scattering problem with incident
plane wave. Here we discuss the case when the incident wave is produced by point
sources.

Let q(x) is compactly supported in the ball� = {x ∈ R
3 : |x | ≤ R} function and

q(x) ∈ C(R3). Consider the equation
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− �u + q(x)u = k2u + δ(x − y), x ∈ R
3, (7.2.1)

where δ(z) is a Dirac delta function. In the contrast to the previous section, here k
is a positive number, k2 = E , and the point y ∈ R

3 is the variable parameter. Let
u(x, k, y) be a solution of this equation of the form

u(x, k, y) = eik|x−y|

4π|x − y| + v(x, k, y), (7.2.2)

where the function v(x, k, y) satisfies the Sommerfeld conditions

v = O(r−1),
∂v

∂r
− ikv = o(r−1), as r = |x | → ∞. (7.2.3)

Then, using Eq. (7.2.1), we deduce that v(x, k, y) is the solution of the following
equation

− �v + q(x)

(
eik|x−y|

4π|x − y| + v(x, k, y)

)

= k2v, x ∈ R
3. (7.2.4)

Inverting the Helmholtz operator −(� + k2), we obtain that the function v(x, k, y)
is the solution of the integral equation

v(x, k, y) = v0(x, k, y) − 1

4π

∫

�

eik|ξ−x |

|ξ − x |q(ξ)v(ξ, k, y) dξ, (7.2.5)

where

v0(x, k, y) = − 1

(4π)2

∫

�

eik(|ξ−x |+|ξ−y|)

|ξ − x ||ξ − y|q(ξ) dξ. (7.2.6)

We again will restrict our analysis to the case of the Born approximation for this
equation assuming that q(x) is enough small, which allows to make the linearization
of the problem. Then v(x, k, y) ≈ v0(x, k, y).

Now we state the following theorem.

Theorem 7.2.1 Let q(x) be a function with a compact support in the ball � = {x ∈
R

3 : |x | ≤ R} and q(x) ∈ C2(R3). Then for any fixed y and k, v0(x, k, y) ∈ C(R3)

and

v0(x, k, y) = eik|x−y|

8ikπ

∫

L(x,y)
q(ξ) ds + o

(
1

k

)
, as k → ∞. (7.2.7)

where L(x, y) = {ξ ∈ R
3 : ξ = y(1 − s) + sx, s ∈ [0, 1]} is the segment of the

straight line passing through points x and y.
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Proof Denote by E(x, y, t) the ellipsoid

E(x, y, t) = {ξ ∈ R
3 : |ξ − x | + |ξ − y| = t},

Let us fix points x and y. Represent x as x = y + ρν(θ,ϕ), where ν(θ,ϕ) is the
unite vector and θ and ϕ are its spherical coordinates. Here ρ, θ andϕ are fixed. Then
the ellipsoid E(x, y, t) is defined only for t ≥ |x − y| = ρ. If t → |x − y|, then the
ellipsoid degenerates into the segment L(x, y). If t > ρ, then the main axis of this
ellipsoid passes through the points x and y and the intersection points of this axis with
the ellipsoid are ξ1 = y − ν(θ,ϕ)(t − ρ)/2 and ξ2 = x + ν(θ,ϕ)(t − ρ)/2. Using
these observations, we represent the variable point ξ ∈ E(x, y, t) as follows:

ξ = y + 1

2
(ρ + t z)ν(θ,ϕ) + r

(
νθ(θ,ϕ) cosϕ + νϕ(θ,ϕ)

sin θ
sinψ

)
, (7.2.8)

where r = r(z; ρ, t) = r(z, |x − y|, t) in (7.2.8) is given by the formula

r(z; ρ, t) = 1

2

√
(t2 − ρ2)(1 − z2) (7.2.9)

and

νθ(θ,ϕ) = ∂ν(θ,ϕ)

∂θ
, νϕ(θ,ϕ) = ∂ν(θ,ϕ)

∂ϕ
.

In formulae (7.2.8) and (7.2.9) z and ψ are variable parameters: z ∈ [−1, 1], ψ ∈
[0, 2π). Hence, ξ = ξ(z,ψ; x, y, t). Note that the unite vectors ν, νθ, νϕ/ sin θ are
mutually orthogonal. Then each point ξ ∈ E(x, y, t) is uniquely defined by z ∈
[−1, 1] andψ ∈ [0, 2π). Indeed, in this case for arbitrary z ∈ [−1, 1] andψ ∈ [0, 2π)

the following equalities hold

|ξ − y| =
√
r2 + 1

4 (t z + ρ)2 = 1
2 (t + zρ),

|ξ − x | =
√
r2 + 1

4 (t z − ρ)2 = 1
2 (t − zρ).

Hence, |ξ − y| + |ξ − x | = t , i.-e. the point ξ ∈ E(x, y, t). On the other hand, for
any ξ given by the formula (7.2.8)we have (ξ − y) · ν = (ρ + t z)/2. Itmeans that the
coordinate z characterize the cross-section of the ellipsoid E(x, y, t) by the plane
orthogonal to ν. For z = −1 this cross-sections degenerates into the point ξ1, for
z = 1 into ξ2. Since the vectors νθ, νϕ/ sin θ are orthogonal to ν, in any cross-section
defined by z ∈ (−1, 1) the coordinateψ in (7.2.8) is uniquely determines the position
of ξ in this cross-section.

For the sake of brevity, we denote e1 = ν, e2 = νθ, e3 = νϕ/ sin θ. Then, it follows
from (7.2.8) that each ξ ∈ E(x, y, t) can be presented as
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ξ = y + 1

2
(ρ + t z)e1 + 1

2

√
(t2 − ρ2)(1 − z2)(e2 cosψ + e3 sinψ). (7.2.10)

For each fixed x and y family of the ellipsoids E(x, y, t), t ≥ ρ = |x − y|, covers
all spaceR3. So, every point ξ ∈ R

3 can be uniquely defined by z, t,ψ. The Jacobian
J = ∂(ξ1,ξ2,ξ3)

∂(z,t,ψ)
can be easily calculated:

J = ∂(ξ1, ξ2, ξ3)

∂(z, t,ψ)
:=

∣∣∣∣
∣∣

∂ξ1/∂z ∂ξ2/∂z ∂ξ3/∂z
∂ξ1/∂t ∂ξ2/∂t ∂ξ3/∂t
∂ξ1/∂ψ ∂ξ2/∂ψ ∂ξ3/∂ψ

∣∣∣∣
∣∣

=
∣∣∣∣∣
∣

te1/2 + rz (e2 cosψ + e3 sinψ)

ze1/2 + rt (e2 cosψ + e3 sinψ)

r (−e2 sinψ + e3 cosψ)

∣∣∣∣∣
∣

= 1

2
r(trt − zrz) = 1

8
(t2 − z2ρ2).

At the same time

|ξ − x ||ξ − y| = 1

4
(t2 − z2ρ2).

Therefore,

dξ

|ξ − x ||ξ − y| = 1

2
dzdψdt.

Using the above transformation in the right hand side integral of (7.2.6) we arrive
at the formula

v0(x, k, y) = − 1

32π2

∫ ∞

ρ

∫ 2π

0

∫ 1

−1
eiktq(ξ) dzdψdt, (7.2.11)

where ξ is defined by formula (7.2.10). Since the function q(x) has a compact support
in the ball�, the integral in (7.2.11)with respect to t is taken along a bounded interval
depended on x and y. Further, the function v0(x, k, y) in (7.2.11) is continuous, due
to the continuity of the integrand. Using in (7.2.11) the integration by parts formula
respect to t , we get:

v0(x, k, y) = eikρ

32ikπ2

(∫ 2π

0

∫ 1

−1
q(ξ) dzdψ

)

t=ρ+0

+ 1

32ikπ2

∫ ∞

ρ

∫ 2π

0

∫ 1

−1
eikt∇q(ξ) · ξt dzdψdt

= eikρ

32ikπ2
I1 + 1

32ikπ2
I2. (7.2.12)
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Since ξ → y + νρ(1 + z)/2 as t → ρ, we have

I1 =
(∫ 2π

0

∫ 1

−1
q(ξ) dzdψ

)

t=ρ+0

= 2π
∫ 1

−1
q(y + νρ(1 + z)/2) dz

= 4π
∫ 1

0
q(y + s(x − y)) ds = 4π

∫

L(x,y)
q(ξ) ds. (7.2.13)

For the second integral I2 we use formula (7.2.10) for ξ to deduce

ξt = z

2
e1 + t

2

√
1 − z2

t2 − ρ2
(e2 cosψ + e3 sinψ).

Then we can transform the integral I2 as follows:

I2 =
∫ ∞

ρ

∫ 2π

0

∫ 1

−1
eikt∇q(ξ) · ξt dzdψdt

=
∫ ∞

ρ

∫ 2π

0

∫ 1

−1
eikt

(
t

2
∇ξq(ξ) · e1

+ t

2

√
1 − z2

t2 − ρ2

[
∇ξq(ξ) · e2 cosψ + ∇ξq(ξ) · e3 sinψ

])
dzdψdt.

Using here the integration by parts formula with respect to ψ, we get

I2 =
∫ ∞

ρ

∫ 2π

0

∫ 1

−1
eikt

(
t

2
∇ξq(ξ) · e1

− t

2

√
1 − z2

t2 − ρ2

[
∇ξ

[∇ξq(ξ) · e2
] · ξψ sinψ

+∇ξ

[∇ξq(ξ) · e3
] · ξψ cosψ

])
dzdψdt.

It follows from (4.2.10) that

√
1 − z2

t2 − ρ2
ξψ = 1

2
(1 − z2)(−e2 sinψ + e3 cosψ)

is a continuous function of z and ψ. As a consequence, the integrand I2 in (7.2.12)
is also continuous function of the variables t , z and ψ. Therefore the double integral
with respect to z, ψ is continuous function of t . Then integral with respect to t is the

http://dx.doi.org/10.1007/978-3-319-62797-7_4
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Fourier transform of continuous finite function. Therefore I2 → 0 as k → ∞. This
conclusion with formulae (7.2.12) and (7.2.13) imply the proof of the theorem. �

Let us now assume that the scattering field is given for every (x, y) ∈ (S × S)

and all k ≥ k0, where k0 a positive number:

v(x, k, y) = f (x, k, y), (x, y) ∈ (S × S), k ≥ k0 (7.2.14)

Then, in the Born approximation, we obtain the following asymptotic formula:

f (x, k, y) = eik|x−y|

8ikπ

∫

L(x,y)
q(ξ) ds + o

(
1

k

)
, as k → ∞. (7.2.15)

where L(x, y) is the segment defined in Theorem 7.2.1. Calculating the integral of
q(x) over this segment we get:

∫

L(x,y)
q(ξ) ds = 8iπ lim

k→∞

[
e−ik|x−y|k f (x, k, y)

]

= g(x, y), (x, y) ∈ (S × S). (7.2.16)

Therefore we arrive at the tomography problem: find q(x) in � from given inte-
grals along arbitrary strait lines jointing the boundary of�. Note that this problem can
be solved separately for each cross-section of the ball � by any plane. We will study
this problem in the next chapter. It follows from this consideration that the tomogra-
phy problem has, at most, an unique solution, and this solution can be derived in an
explicit form.

7.3 Dirichlet to Neumann Map

Let � ⊂ R
n be a bounded domain with the smooth boundary ∂�. Consider the

Dirichlet problem

�u + q(x)u = 0, x ∈ �, u|∂� = f (x). (7.3.1)

Denote by u(x; q) the unique weak solution u(·; q) ∈ H 1(�) of this problem, cor-
responding to a given coefficient q(x) from some class of admissible coefficients in
L2(�). It is well known that if � ⊂ R

n is a bounded domain with the C1-smooth
boundary ∂�, then there exists a bounded linear operator Tr : H 1(�) �→ H 1/2(∂�),
called the trace of u on ∂�, such that

Tru := u(·; q)|∂�, and ‖Tru‖L2(∂�) ≤ C0‖u‖H 1(�), C0 = C0(�) > 0.
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Now, taking (formally) the derivative of the solution u(·; q) ∈ H 1(�) of problem
(7.3.1) along the outward normal n to the boundary ∂� at x ∈ ∂�, we can find the
trace:

∂u(·; q)

∂n

∣∣∣
∂�

, q ∈ L2(�). (7.3.2)

According to [62], this trace is uniquely determined as an element of H−1/2(∂�).
Thus, we have constructed a mappings which transforms each element (coefficient)
q ∈ Q to the unique element (trace of the derivative of the solution) of H 1/2(∂�)

given by (7.3.2). In this transformation, under the assumption that q ∈ Q is given, we
first used theDirichlet data given in (7.3.1), which uniquely defines the solution, then
we used the normal derivative of the solution in (7.3.2), which is usually associated
with the Neumann data. Subsequently, this gave rise to the terminology ‘‘Dirichlet-
Neumann operator”.

Definition 7.3.1 Let u(x; q) be the unique weak solution u(·; q) ∈ H 1(�) of prob-
lem (7.3.1), corresponding to a given coefficient q ∈ L2(�). Then the mapping

�q : H 1/2(∂�) �→ H−1/2(∂�) (7.3.3)

defined by (7.3.2) is called the Dirichlet-Neumann operator, that is,

�qu := ∂u(·; q)

∂n

∣∣∣
∂�

, q ∈ L2(�). (7.3.4)

Let now f ∈ L2(∂�) be a given input in (7.3.1). It follows from the above con-
clusions that for a given coefficient q ∈ L2(�) the Dirichlet-Neumann operator is
uniquely defined by the equality

�q f (x) := ∂u(·; q)

∂n

∣∣∣
∂�

= g(x), x ∈ ∂�. (7.3.5)

We assume now that g ∈ L2(�) be a given output data. Then we can naturally
raise the question: does the operator �q define uniquely the function q(x)? The
answer on this question is positive [91].

Theorem 7.3.1 Let � ⊂ R
n, n ≥ 3, be a bounded domain with smooth boundary

and qk(x) ∈ L2(�) for k = 1, 2. Then �q1 = �q2 implies q1(x) = q2(x) in �.

Proof of this theorem is based on a construction of a special solution of the equation
�u + q(x)u = 0, which depends on a complex parameter ζ = ξ + iη satisfying
the condition ζ · ζ = 0. This solution has the form uζ(x) = (1 + vζ(x)) exp(x · ζ),
where vζ(x) satisfies the estimate ‖vζ‖L2(�) ≤ C/|ζ| for large |ζ|. Note that this
solution is unbounded for x · η < 0 and |η| → ∞. We refer the reader to [91] for
details of the proof.
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Now we consider a linearized inverse problem. Let � ∈ R
2 be the unite disk

|x | < 1. Denote by (r,ϕ) polar coordinates of point x ∈ �. We assume that the input
data f (x) in (7.3.1) is given as the Fourier harmonics, that is, f (x) := exp(imϕ),
for m = 0,±1,±2, . . .. Denote the solution of the problem (7.3.1) corresponding
the such Dirichlet data by um := um(r,ϕ; q). Then given operator �q is equivalent
to the following information

∂um(r,ϕ; q)

∂r

∣∣∣
r=1

= gm(ϕ), ϕ ∈ [0, 2π], m = 0,±1,±2, . . . . (7.3.6)

Consider the inverse problem of recovering q(r,ϕ) from the given by (7.3.6)
output data gm(ϕ), m = 0,±1,±2, . . .. Assume that q(r,ϕ) and its derivative
qϕ(r,ϕ) are continues functions in�. Assume also that function q(r,ϕ) is small, i.e.
|q(r,ϕ)| << 1. Then, in the linear approximation, we can represent solution to the
problem

�um + q(x)um = 0, x ∈ �, um |r=1 = eimϕ, (7.3.7)

in the form

um(r,ϕ) = ūm(r,ϕ) + vm(r,ϕ), (7.3.8)

where ūm(r,ϕ) is the solution to the problem

1

r

∂

∂r

(
r
∂ūm

∂r

)
+ 1

r2
∂2ūm

∂ϕ2
= 0, ūm |r=1 = eimϕ, (7.3.9)

and vm(r,ϕ) solves the problem

1

r

∂

∂r

(
r
∂vm

∂r

)
+ 1

r2
∂2vm

∂ϕ2
+ q(x)ūm = 0, vm |r=1 = 0. (7.3.10)

The solution of the problem (7.3.9) is given by the formula

ūm = r |m|eimϕ, (7.3.11)

that can be checked directly. Represent the functions vm(r,ϕ) and q(r,ϕ) as the
Fourier series with respect to ϕ:

vm(r,ϕ) =
∞∑

n=−∞
vm
n (r)einϕ, q(r,ϕ) =

∞∑

n=−∞
qn(r)e

inϕ. (7.3.12)

Then the Fourier coefficients vm
n (r) satisfy the following equations
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1

r

d

dr

(
r
dvm

n

dr

)
− n2

r2
vm
n + qn−mr

|m| = 0, vm
n |r=1 = 0. (7.3.13)

We can represent the solution of problem (7.3.13) via the Green function Gn(r, ρ)

as

vm
n (r,ϕ) = −

∫ 1

0
Gn(r, ρ)qn−m(ρ)ρ|m|dρ. (7.3.14)

Here the Gn(r, ρ) a is bounded function for all r ∈ [0, 1] and satisfies for r ∈ [0, ρ]
and r ∈ [ρ, 1] to the equation

1

r

d

dr

(
r
dGn

dr

)
− n2

r2
Gn = 0 (7.3.15)

and the following conditions

Gn(1, ρ) = 0, Gn(ρ − 0, ρ) = Gn(ρ + 0, ρ),

dGn(r, ρ)

dr

∣∣
∣
r=ρ+0

− dGn(r, ρ)

dr

∣∣
∣
r=ρ−0

= 1. (7.3.16)

The such function can be easily constructed. Noting that the Eq. (7.3.15) has for
n �= 0 two linearly independent solutions r |n| and r−|n|, we can find the bounded
function Gn for n �= 0 in the form

Gn(r, ρ) =
{
C1nr |n| + C2nr−|n|, ρ ≤ r ≤ 1,
C3nr |n|, 0 ≤ r ≤ ρ.

(7.3.17)

Choosing Ckn = Ckn(ρ), k = 1, 2, 3, from conditions (7.3.16) we come to the linear
system

C1n + C2n = 0,

C1nρ
|n| + C2nρ

−|n| − C3nρ
|n| = 0, (7.3.18)

C1nρ
|n|−1 − C2nρ

−|n|−1 − C3nρ
|n|−1 = 1/|n|.

The solution of this system is

C1n = ρ1+|n|

2|n| , C2n = −ρ1+|n|

2|n| , C3n = ρ1+|n| − ρ1−|n|

2|n| . (7.3.19)

Hence,

Gn(r, ρ) = 1

2|n|
{

(r |n| − r−|n|)ρ1+|n|, ρ ≤ r ≤ 1,
r |n|(ρ1+|n| − ρ1−|n|), 0 ≤ r ≤ ρ,

(7.3.20)
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if n �= 0.
If n = 0 then (7.3.15) has two linearly independent solutions 1 and ln r . Then we

can find the bounded function G0(r, ρ) in the form

G0(r, ρ) =
{
C10 + C20 ln r, ρ ≤ r ≤ 1,
C30, 0 ≤ r ≤ ρ.

(7.3.21)

Easily to check that in this case convenient Ck0, for which conditions (7.3.16) hold,
are found as:

C10 = 0, C20 = ρ, C30 = ρ ln ρ. (7.3.22)

Therefore,

G0(r, ρ) =
{

ρ ln r ρ ≤ r ≤ 1,
ρ ln ρ, 0 ≤ r ≤ ρ.

(7.3.23)

Note that data of the inverse problem allows to find dvm
n /dr at r = 1. Indeed,

using equalities (7.3.6), (7.3.8) and (7.3.11), we obtain

dvm
n

dr

∣∣∣
r=1

= gmn − δmn = ḡmn , (7.3.24)

where gmn are Fourier coefficients of given functions gm(ϕ) and δmn is the Krönecker
delta. Then differentiating equality (7.3.14) and putting r = 1, we get

ḡmn = −
∫ 1

0
qn−m(ρ)ρ|m|+|n|+1dρ, n,m = 0,±1,±2, . . . . (7.3.25)

Put here n − m = k and fix k. The above equalities can be rewritten as

ḡmm+k = −
∫ 1

0
qk(ρ)ρ|m|+|m+k|+1dρ, m = 0 ± 1,±2, . . . . (7.3.26)

Since for real-valued potential q(r,ϕ) the equalities q−k = qk hold, we can consider
only nonnegative values of k. Assuming k ≥ 0, consider (7.3.26) for m ≥ 0. Then

ḡmm+k = −
∫ 1

0
qk(ρ)ρk+1+2mdρ, m = 0, 1, 2, . . . , (7.3.27)

or

ḡmm+k = −1

2

∫ 1

0
ηk(z)z

mdz, m = 0, 1, 2, . . . , (7.3.28)
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where ηk(z) = qk(
√
z)

√
zk .

Thus, we arrive at the well known the moment’s problem: given the moments
(7.3.28) for m = 0, 1, 2, . . . find ηk(z). This problem has a unique solution. Further-
more, all qk(r) are uniquely defined from (7.3.28). Then the solution q(r,ϕ) of the
inverse problem can be derived via the Fourier series.



Chapter 8
Inverse Problems for the Stationary
Transport Equations

Inverse problems related to the transport equations arise in many areas of applied
sciences and have various applications in medical imaging and tomography. At least
the three techniques—X ray tomography, single particle emission tomography and
positron emission tomography—are based on the transport equations. On the other
hand, mathematical models governed by the transport equations have some advan-
tages over the traditional integral geometric approach, at least by accurate modeling
and inversion formulae, which we derive in this chapter.

8.1 The Transport Equation Without Scattering

Let � ∈ R
3 be a compact domain with smooth boundary ∂�, S2 = {ν ∈ R

3| |ν| =
1}, x ∈ R

3 and ν ∈ S2. For function u(x, ν) consider the equation

ν · ∇xu + σ(x)u +
∫
S2

K (x, ν, ν′)u(x, ν′)dν′ = F(x, ν), x ∈ �, ν ∈ S2. (8.1.1)

Equation (8.1.1) is called the transport equation. The function u(x, ν) is the
density of particles u(x, ν) in the space of positions x ∈ � travelling in direction
ν ∈ S2, σ(x) is the attenuation coefficient, K (x, ν, ν ′) is the dispersion index and
function F(x, ν) is the source term. Equation (8.1.1) describes a transport of particles
in a medium which absorbs and scatterers the particles.

Since the domain � in the Eq. (8.1.1) is compact, we need to add a boundary
condition in order to define a unique solution to (8.1.1). For this goal we introduce
the set ∂−�(ν) = {x ∈ ∂�| n(x) · ν ≤ 0}, for a fixed ν, where n(x) is an outward
normal to ∂� at the point x ∈ ∂�. Then the boundary condition has the form

© Springer International Publishing AG 2017
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u(x, ν) = h(x, ν) for all x ∈ ∂−�(ν) and for all ν ∈ S2. (8.1.2)

The relations (8.1.1) and (8.1.2) form the direct problem for the transport equation:
given σ(x), K (x, ν, ν ′) and F(x, ν) find u(x, ν) for x ∈ � and ν ∈ S2. This is a
well posed problem in appropriate functional spaces of functions and for the desired
function u(x, ν).

For Eq. (8.1.1) there exist different formulations of the inverse problems of deter-
mining an unknown attenuation coefficient σ(x) and dispersion index K (x, ν, ν ′),
from a given information on the solutions to direct problems (see, for instance the
book [86] and references therein). In this chapter, we concentrate only on the inverse
problem related to the transport equation without scattering. Namely, instead of
Eq. (8.1.1) we will consider the equation

ν · ∇xu + σ(x)u = 0, x ∈ �, ν ∈ S2. (8.1.3)

For this equation we consider the following inverse coefficient problem: find σ(x) in
� from the information

g(x, ν) := u(x, ν) for all x ∈ ∂+�(ν) and for all ν ∈ S2, (8.1.4)

about the solution of the problem (8.1.3) and (8.1.2) on the boundary ∂+�(ν) = {x ∈
∂�| n(x) · ν > 0}. This is awell known tomography problemwhich occurs in tomog-
raphywhen a physical body is exposed toX rays and the radiation ismeasured outside
the body in a tomographic fashion. Note that the scalar product ν · ∇xu represents
the derivative of function u(x, ν) in the direction ν. Assuming that h(x, ν) > 0 one
can invert Eq. (8.1.3) using the boundary data (8.1.2). Then we obtain the following
formula for the function u(x, ν):

u(x, ν) = h(ξ∗(x, ν), ν)e− ∫
L(x, ν)

σ(ξ) ds, (8.1.5)

where L(x, ν) = {ξ ∈ �| ξ = x − sν} is the segment of the direct line going from
point x in the direction −ν and belonging to �, ξ∗(x, ν) is the intersection point of
L(x, ν) with ∂−�(ν) and ds is the arc length element. Then from (8.1.5) we obtain
the relation

∫
L(x, ν)

σ(ξ) ds = f (x, ν), x ∈ ∂+�(ν), ν ∈ S2, (8.1.6)

where f (x, ν) = − ln(g(x, ν)/h(ξ∗(x, ν), ν)).
Thus, the tomography problem is transformed to the problem of recovering a coef-

ficient σ(x) from the given integrals along the segments L(x, ν) of arbitrary direct
lines crossing domain�. Note that we can consider the problem as a two-dimensional
one for an arbitrary cross-section domain� by a plane and choosing L(x, ν) belong-
ing to this plane only. For example, one can consider the one-parametric family of
cross-sections of � by the planes x3 = const and solve the tomography problem for
each of this cross-sections in order to find σ(x) for all x ∈ �.
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Another class of inverse problems, close to the tomography problem, is related to
the determination of an unknown source term F(x) in the transport equation

ν · ∇xu + a(x)u = F(x), x ∈ �, ν ∈ S2, (8.1.7)

when the function a(x) ≥ 0 is assumed to be known. Adding to this equation the
homogeneous boundary condition

u(x, ν) = 0, x ∈ ∂−�(ν), ν ∈ S2, (8.1.8)

we formulate the following the inverse source problem of recovering an unknown
source in the transport equation: Find F(x) in (8.1.7) and (8.1.8) from the measured
data g(x, ν) given by (8.1.4).

Remark that the inverse source problem is linear, while the inverse coefficient
problem defined by (8.1.3) and (8.1.4) is non-linear.

Let us derive an integral representation for the solution of the inverse source
problem. Along the half-line L(x, ν) = {ξ ∈ � ⊂ R

3 : ξ = x − sν, s ∈ (0,∞)} the
Eq. (8.1.7) can be rewritten in the form

− d

ds

[
u(x − sν, ν)e− ∫ s

0 a(x−s ′ν)ds ′] = F(x − sν)e− ∫ s
0 a(x−s ′ν)ds ′

. (8.1.9)

Let s(x, ν) be the arc length of the segment of L(x, ν) that belong�. Then integrating
(8.1.9) along L(x, ν) for s ∈ [0, s(x, ν)] and using the condition (8.1.8) we get

u(x, ν) =
∫ s(x,ν)

0
F(x − sν)e− ∫ s

0 a(x−s ′ν)ds ′
ds, (x, ν) ∈ � × S2.

Substituting here x ∈ ∂+�(ν) and using the additional condition (8.1.4), we obtain
we integral equation for unknown function F(x):

∫ s(x,ν)

0
F(x − sν)e− ∫ s

0 a(x−s ′ν)ds ′
ds = g(x, ν), x ∈ ∂+�(ν), ν ∈ S2.

Assuming that F(x) = 0 outside �, the latter equation can also be rewritten in the
form

g(x, ν) =
∫
L(x,ν)

F(x − sν)e− ∫ s
0 a(x−s ′ν)ds ′

ds, x ∈ ∂+�(ν), ν ∈ S2.

Hence, the inverse source problem is reduced to the attenuated Radon transform: find
F(x) from given integrals along arbitrary half-lines L(x, ν), x ∈ ∂+�(ν), ν ∈ S2,
with the attenuation defined by the coefficient a(x).

The last problem can also be reduced to the two-dimension one for any cross-
section of � by a plane and choosing L(x, ν), x ∈ ∂+�(ν), ν ∈ S2, belonging to
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this cross-section only. An inversion formula for this problem was obtained by R.
Novikov (see [79]).

8.2 Uniqueness and a Stability Estimate in the Tomography
Problem

Consider the tomography problem (8.1.6) on the plane (x1, x2) ∈ R
2. Let � = {x ∈

R
2| |x | ≤ 1} be the circle and ∂� = {x ∈ R

2| |x | = 1} be its boundary. Assume here
that σ ∈ C1(�). Then substituting x = x(ϕ) = (cosϕ, sinϕ) for x ∈ ∂+�(ν) and
ν = ν(θ) = (cos θ, sin θ), we can rewrite the Eq. (8.1.6) in the following form:

∫
L(x, ν)

σ(ξ) ds = f̂ (ϕ, θ), (ϕ, θ) ∈ [0, 2π] × [0, 2π], (8.2.1)

where f̂ (ϕ, θ) = f (x(ϕ), ν(θ)). For x ∈ � and ν = (cos θ, sin θ) introduce the
function

v(x, θ) =
∫
L(x, ν)

σ(x − sν) ds. (8.2.2)

Then this function satisfy the equation

ν(θ) · ∇xv(x, θ) = σ(x), x ∈ �, θ ∈ [0, 2π] (8.2.3)

and the condition

v(x(ϕ), θ) = f̂ (ϕ, θ), (ϕ, θ) ∈ [0, 2π] × [0, 2π]. (8.2.4)

Taking derivative with respect to θ, we exclude the function σ(x) from the Eq. (8.2.3)
and obtain

∂

∂θ
(ν · ∇xv(x, θ)) = 0, x ∈ �, θ ∈ [0, 2π]. (8.2.5)

Use Mukhometov’s identity [70], which can be checked directly:

2(νθ · ∇xv(x, θ))
∂

∂θ
(ν · ∇xv(x, θ)) = ∂

∂x1
(vθvx2) − ∂

∂x2
(vθvx1)

+ |∇xv(x, θ)|2 + ∂

∂θ
[(ν(θ) · ∇xv(x, θ))(νθ(θ) · ∇xv(x, θ))] , (8.2.6)

where νθ = (− sin θ, cos θ). Then it follows from (8.2.5) and (8.2.6) that
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∂

∂x1
(vθvx2) − ∂

∂x2
(vθvx1) + |∇xv(x, θ)|2

+ ∂

∂θ
[(ν · ∇xv(x, θ))(νθ · ∇xv(x, θ))] = 0. (8.2.7)

Integrating the equality (8.2.7) over � and [0, 2π], and then taking into account that
v(x, θ)) is a periodic function with respect to θ we get:

∫ 2π

0

∫
�

[ ∂

∂x1
(vθvx2) − ∂

∂x2
(vθvx1) + |∇xv(x, θ)|2

]
dxdθ = 0.

Applying Gauss’s formula, we obtain

∫ 2π

0

∫
�

|∇xv(x, θ)|2dxdθ = −
∫ 2π

0

∫ 2π

0
vθ(x(ϕ), θ)vϕ(x(ϕ), θ)dθdϕ.

Using (8.2.4) and the relations σ2(x) = |ν · ∇xv(x, θ)|2 ≤ |∇xv(x, θ)|2, we find the
stability estimate for the tomography problem as follows:

∫
�

σ2(x)dx ≤ − 1

2π

∫ 2π

0

∫ 2π

0
f̂ϕ(ϕ, θ) f̂θ(ϕ, θ)dθdϕ.

Thus,

‖σ‖L2(�) ≤ 1

2
√

π
‖ f̂ ‖H 1([0,2π]×[0,2π]). (8.2.8)

The uniqueness of the solution of the tomography problem follows from estimate
(8.2.8). That is, if data f̂k(x, ν) corresponds to σk(x) for k = 1, 2, and f̂1(x, ν) =
f̂2(x, ν), then σ1(x) = σ2(x), x ∈ �.

8.3 Inversion Formula

Letσ(x) ∈ C(R2) andσ(x) = 0 for x ∈ R
2 \ �. Assume ν = (cos θ, sin θ) and νθ =

(− sin θ, cos θ), p ∈ [0,∞) and define function f (θ, p) by the formula

f (θ, p) =
∫ ∞

−∞
σ(sνθ + pν) ds, θ ∈ [0, 2π], p ∈ [0,∞). (8.3.1)

The mapping � : σ → f is called the Radon transform. It is clear that the Radon
transform for fixed (θ, p) is the integral from σ(x) along the direct line ν · ξ = p.
So, the tomography problem consists in the inverting of the Radon transform. We
derive now the inversion formula following [28].
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For a fixed x ∈ � and p ∈ [0,∞) consider the equality

1

2π

∫ 2π

0
f (θ, p + x · ν)dθ = 1

2π

∫ ∞

−∞

∫ 2π

0
σ(sνθ + pν + (x · ν)ν) dθ ds

= 1

2π

∫ ∞

−∞

∫ 2π

0
σ((s − x · νθ)νθ + pν + x) dθ ds

= 1

2π

∫ ∞

−∞

∫ 2π

0
σ(tνθ + pν + x) dθ dt

=
∫ ∞

−∞
F

(
x,

√
p2 + t2

)
dt, (8.3.2)

where

F
(
x,

√
p2 + t2

)
= 1

2π

∫ 2π

0
σ(tνθ + pν + x) dθ. (8.3.3)

Note that for a fixed x the function F(x, r) represents an average value of σ(ξ) over
the circumference with the center at x and the radius r = √

p2 + t2 since |ξ − x | =
|tνθ + pν| = r = √

p2 + t2, and therefore depends on x and r only. Evidently, this is
a continuous function of x and r , for all x ∈ � and r ∈ [0,∞). Furthermore, F(x, r)
is a finite-valued function of r and F(x, 0) = σ(x). Thus, to obtain an inversion
formula, we need to calculate F(x, 0). For this goal, we use the following identity,
obtained by the change of variable:

∫ ∞

−∞
F

(
x,

√
p2 + t2

)
dt =

∫ ∞

p
F(x, r)

2rdr√
r2 − p2

. (8.3.4)

Hence,

1

2π

∫ 2π

0
f (θ, p + x · ν)dθ =

∫ ∞

p
F(x, r)

2rdr√
r2 − p2

. (8.3.5)

Applying to the right hand side of the latter equality the operator

Lg(s) = − 1

πs

∂

∂s

∫ ∞

s

g(p)p dp√
p2 − s2

,

we find



8.3 Inversion Formula 225

− 1

πs

∂

∂s

∫ ∞

s

∫ ∞

p
F(x, r)

2rdr√
(r2 − p2)(p2 − s2)

p dp

= − 1

πs

∂

∂s

∫ ∞

s
F(x, r)

∫ r

s

2p dp√
(r2 − p2)(p2 − s2)

rdr

= −1

s

∂

∂s

∫ ∞

s
F(x, r)rdr = F(x, s). (8.3.6)

Then from (8.3.5) we obtain the inversion formula as follows

σ(x) = − lim
s→0+

1

2π2s

∂

∂s

∫ ∞

s

∫ 2π

0
f (θ, p + x · ν)dθ

pdp√
p2 − s2

. (8.3.7)

This formula valid and for not a finite-valued function σ(x). It is still true
if we assume that σ(x) tends to zero as |x | → ∞ together with |x |kσ(x) for any
positive k.

Various aspects of inverse problems for transport equations can be found in
[4, 5, 18].



Chapter 9
The Inverse Kinematic Problem

The problem of recovering the sound speed (or index of refraction) from travel time
measurements is an important issue in determining the substructure of the Earth.
The same inverse problem can also be defined as the problem of reconstructing of
a Riemannian metric inside a compact domain � from given distances of geodesics
joining arbitrary couples of points belonging to the boundary of �. This chapter
studies some basic inverse kinematic problems. Specifically, in this chapter we give
an analysis of the inverse kinematic problem for one- and two-dimensional cases.

9.1 The Problem Formulation

Let a compact domain � ∈ R
n be filled with an isotropic inhomogeneous substance

in which waves propagate with the speed c(x). We shall assume that c(x) is an
uniformly bounded positive smooth function in the closed domain �. Introduce the
Riemannian metric dτ = |dx |/c(x), |dx | = (

∑n
i=1 dx2

i )1/2 anddenote by τ (x, y) the
length of the geodesic line �(x, y) joining points x and y. Physically, the function
τ (x, y) means travel time between points x and y. It is well known that τ (x, y) is
a symmetric function of their arguments, i.-e. τ (x, y) = τ (y, x) and satisfies to the
eikonal equation

|∇xτ (x, y)|2 = n2(x), (9.1.1)

where n(x) = 1/c(x) is the refractive index. Moreover, τ (x, y) satisfy the additional
condition

τ (x, y) ∼ n(y)|x − y|, as x → y. (9.1.2)

The latter condition means that the travel time τ (x, y) can be calculated as in homo-
geneous medium with speed equal to c(y) if x close to y. In the next subsection we

© Springer International Publishing AG 2017
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228 9 The Inverse Kinematic Problem

consider how to construct the function τ (x, y) and the geodesic lines �(x, y) for a
given function c(x).

Now we formulate the inverse problem: find c(x) in � from τ (x, y) given for all
(x, y) ∈ (∂� × ∂�). Here ∂� is a smooth boundary of �.

The above problem is called the inverse kinematic problem. It has various appli-
cations in the geophysics and other sciences. It was noted for a long time ago that
the inverse kinematics problem has no unique solution if the medium has inner wave
guides. Therefore this problem is studied usually under assumption that field of geo-
desic lines is regular inside�. The latter means that each couple of points x, y can be
joined in � by only one geodesic line and boundary ∂� of � is convex with respect
to these geodesics.

9.2 Rays and Fronts

Here we construct a solution to problem (9.1.1) and (9.1.2) following the well known
method of solving the first order partial differential equations.We assume that τ (x, y)

is a twice continuously differentiable function for all x �= y. Introduce the function
p = p(x, y) := ∇xτ (x, y). Then Eq. (9.1.1) can be rewritten in the form

n∑

j=1

p2
j (x, y) = n2(x), (9.2.1)

where p j denote j-th component of the vector p. Taking the derivative of both sides
of (9.2.1) with respect to xk , one obtains

2
n∑

j=1

∂ p j

∂xk
p j = 2n(x)nxk (x), k = 1, 2, . . . , n. (9.2.2)

Since
∂ p j

∂xk
= ∂2τ

∂x j xk
= ∂ pk

∂x j

Equation (9.2.2) can be transformed to the form

n∑

j=1

∂ pk

∂x j
p j = n(x)nxk (x), k = 1, 2, . . . , n. (9.2.3)

Introduce the new variable parameter s such that value s = 0 corresponds to point y
and consider in Rn the curves determined by the equations



9.2 Rays and Fronts 229

dx j

ds
= p j

n2(x)
, i = 1, 2, . . . , n. (9.2.4)

Along these curves one has

n∑

j=1

∂ pk

∂x j
p j = n2(x)

n∑

j=1

∂ pk

∂x j

dx j

ds
= n2(x)

dpk

ds
.

Hence, Eq. (9.2.3) are the ordinary differential equations

dpk

ds
= ∂ ln n(x)

∂xk
, k = 1, 2, . . . , n. (9.2.5)

Equations (9.2.4) and (9.2.5) form the system of differential equations for x and
p that determines x, p as functions of s. Let us explain the meaning of the variable s.
To this end, calculate the derivative of τ with respect to s along the curves determined
by Eqs. (9.2.4) and (9.2.5). We find:

dτ

ds
=

n∑

j=1

τx j

dx j

ds
=

n∑

j=1

p2
j

n2(x)
= 1.

Hence, τ = s because s and τ equal zero at point y. Therefore Eqs. (9.2.4) and (9.2.5)
can be written in the form

dx

dτ
= p

n2(x)
,

dp

dτ
= ∇ ln n(x). (9.2.6)

Equation (9.2.6) are called Euler’s equations. The curves determined by Euler’s
equations are called the characteristic lines. In spaceRn they determine the geodesic
lines �(x, y). In geophysical applications these lines are defined as rays. In order to
find these lines consider the solution to Eq. (9.2.6) with the following initial data

x |τ=0 = y, p|τ=0 = p0, (9.2.7)

where p0 = (p0
1, . . . , p0

n) is an arbitrary vector satisfying to the condition

|p0| = n(y). (9.2.8)

Then the solution to the Cauchy problem (9.2.6) and (9.2.8) gives the geodesic
�(x, y) which goes from point y in the direction determined by the vector

ζ0 = dx

dτ

∣
∣
∣
∣
τ=0

= p0

n2(y)
. (9.2.9)



230 9 The Inverse Kinematic Problem

Hence, ζ0 = (ζ01 , . . . , ζ
0
n ) satisfies to the relation

n(y)|ζ0| = 1. (9.2.10)

Problem (9.2.6) and (9.2.7) has a unique solution at least in the vicinity of the
point y if n(x) is a smooth function. Namely, if n(x) ∈ Ck(Rn) with k ≥ 2 then the
solution can be represented in the form

x = f1(τ , y, ζ0), p = f2(τ , y, ζ0),

where f1, f2 are Ck−1-smooth functions of τ , y, ζ0. Moreover, these functions can
be represented in the following form

x = f (τζ0, y), p = f̂ (τζ0, y)/τ ,

where f (τζ0, y) = f1(1, y, τζ0), f̂ (τζ0, y) = f2(1, y, τζ0) The latter is a conse-
quence of the following observation: if we introduce p̂, τ̂ and p̂0, ζ̂0 by the relations
p = λ p̂, τ = τ̂/λ, p0 = λ p̂0, ζ0 = λζ̂0, where λ > 0, and simultaneously replace
p, τ , p0 on p̂, τ̂ , p̂0 in (9.2.6) and (9.2.7), these equations are not changed. Hence,
x, p̂ can be given in the form

x = f1(τ̂ , y, ζ̂0) = f1(λτ , y, ζ0λ−1), p̂ = f2(τ̂ , y, ζ̂0) = f2(λτ , y, ζ0λ−1).

Taking hereλ = 1/τ , one gets the above representation x = f (ζ, y), p = f̂ (ζ, y)/τ ,
where ζ = τζ0. The components ζ1, . . . , ζn of the variable ζ are called the Rie-
mannian coordinates of the point x with respect to fixed point y. From relations
(9.2.6) and the definition (9.2.9) of ζ0 follows that in a vicinity of y one has

x = f (ζ, y) = y + ∂x

∂τ

∣
∣
∣
∣
τ=0

τ + O(τ 2) = y + ζ + O(|ζ|2). (9.2.11)

Hence,

det

(
∂x

∂ζ

)∣
∣
∣
∣
ζ=0

= 1. (9.2.12)

It means that function x = f (ζ, y) has an inverse ζ = g(x, y) determined, at least,
in the vicinity of point the y. Furthermore, the inverse function is smooth, that is, if
n(x) ∈ Ck(Rn), then it belongs to Ck−1. It follows from (9.2.10) that the following
representation holds for the function τ 2(x, y):

τ 2(x, y) = n2(x)|g(x, y)|2. (9.2.13)

Since p = ∇τ , one also has
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∇τ 2(x, y) = 2 f̂ (g(x, y), y). (9.2.14)

Now it is obvious that τ 2(x, y) is Ck-smooth function of x and y, at least, for x
close to y. For the case, when section curvatures of the Riemannian metric are
non-positive, the geodesic lines �(x, y) passing through the point y have no point
of intersection, for any x , except the starting point y, and in addition, τ 2(x, y) is
a smooth function anywhere. The condition τ (x, y) = O(|x − y|) as x → y is a
consequence of (9.2.11) which is equivalent to the relation

ζ = x − y + O(|x − y|2) as x → y. (9.2.15)

Thus, in order tofind thegeodesic linewhichpasses through thepoint y in direction
ζ0 satisfying condition (9.2.10), one should solve the Cauchy problem (9.2.6) and
eq6.9), where p0 = ζ0n2(y). Each of these geodesic lines with the common point
y can be represented by the equation x = f (ζ, y), where ζ = ζ0τ , where f (ζ, y)

is a smooth function and has the inverse one ζ = g(x, y). Then formula (9.2.13)
determines τ (x, y) satisfying relations (9.1.1) and 9.1.2). Physically, the Riemannian
sphere τ (x, y) = constant , presents the front of a wave propagating from a point
source placed at y. Since p = ∇xτ (x, y) is the normal to this sphere, it follows from
(7.2.6) that geodesic lines �(x, y) are orthogonal to the front. Briefly speaking, the
rays and fronts are orthogonal one to other.

Note that p0 can be represented in the form

p0 = −∇yτ (x, y). (9.2.16)

Indeed, the vector ∇yτ (x, y) is directed at the point y in the direction of outward
normal to the Riemannian sphere τ (x, y) = constant centered at x . On the other
hand, this vector is in the tangent direction to �(x, y) at y, but in opposite to p0

direction. Hence, we need to put sign (−) in (9.2.16) to obtain p0.
The formulae (7.2.9) and (7.2.16) imply the following relation:

ζ = − 1

2n2(y)
∇yτ

2(x, y), (9.2.17)

which expresses the Riemannian variable ζ through the geodesic distance between
the points x and y.

9.3 The One-Dimensional Problem

LetR2+ = {(x, y) ∈ R
2| y ≥ 0} and a speed c in this half-space be a positive function

of y, i.e., c = c(y). Suppose that c ∈ C2[0,∞) and its derivative c′(y) is positive on
[0,∞). Then a perturbation produced at the origin (0, 0) reaches to a point (ξ, 0),
ξ > 0, along a smooth curve, which belongs (except of its ends) to R

2+ and it is

http://dx.doi.org/10.1007/978-3-319-62797-7_7
http://dx.doi.org/10.1007/978-3-319-62797-7_7
http://dx.doi.org/10.1007/978-3-319-62797-7_7
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symmetric with respect to the line x = ξ/2. In geophysics this curve is called the
ray. Fromamathematical point of view, it is a geodesic line for theRiemannianmetric
with an element of a length dτ determined by the formula dτ = √

dx2 + dy2/c(y).
Denote by t (ξ) the corresponding travel time along the ray. For ξ small enough, t (ξ)
is a single-valued monotonic increasing function. It may be false if ξ is not small.
Assume here that t (ξ) is a single-valued function on the interval (0, ξ0).

Consider the following problem: given t (ξ) for ξ ∈ (0, ξ0) find c(y) inR2+, where
it is possible. The problem is called the one-dimensional inverse kinematic problem.
This problem has been solved byG. Herglotz [42] in the beginning of the last century.
He obtains an explicit formula for the solution to the problem. Below we explain the
main ideas, which solve the problem.

Consider the function τ (x, y), which means here the travel time from the origin to
point (x, y) ∈ R

2+. Then eikonal equation has the form

(
∂τ (x, y)

∂x

)2

+
(

∂τ (x, y)

∂y

)2

= n2(y), (9.3.1)

where n(y) = 1/c(y). Use now Euler’s equations (9.2.6). Then the equations can be
rewritten as follows

dx

dτ
= p

n2(y)
,

dy

dτ
= q

n2(y)
,

dp

dτ
= 0,

dq

dτ
= (ln n(y))′. (9.3.2)

Here p = τx (x, y) and q = τy(x, y). It follows from these equations that p is a
constant along the geodesic line �(x, y) joined the origin and the point (x, y). Par-
ticularly, for �(ξ, 0) the parameter p is determined by ξ, i.e., p = p(ξ).

From equation (9.3.1) we deduce that q = ±√
n2(y) − p2. The sign (+) should

be taken at those points of the geodesic line where τy(x, y) > 0 and sign (−) for the
points in which τy(x, y) < 0. From (9.3.2) we find that

dx

dy
= ± p

√
n2(y) − p2

,
dτ

dy
= ± n2(y)

√
n2(y) − p2

. (9.3.3)

Suppose that the equation n(y) = p has the solution y = η > 0, η = η(p). Then
the ray �(ξ, 0) tangents to the straight line y = η and represents the symmetric arc
passing through the origin and the point (ξ, 0). This arc has its vertex at the line
y = η and belongs to the strip {(x, y)| 0 ≤ y ≤ η}. The coordinates of the vertex are
(ξ/2, η). In the Eq. (9.3.3) the sign (+) corresponds to the part of the ray from the
origin to point (ξ/2, η) and (−) to the remain part. Integrating (9.3.3), one finds the
relations for ξ and t (ξ) in the form
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ξ = 2
∫ η

0

p dy
√

n2(y) − p2
t (ξ) = 2

∫ η

0

n2(y) dy
√

n2(y) − p2
. (9.3.4)

Recall that here n(η) = p.
The Eq. (9.3.4) form the complete system of relations for the inverse problems.

To give an analysis of this system, we make a change of variables in the integrals
by introducing the new integration variable z = n(y). Since n(y) is a monotone
decreasing function, there exists an inverse monotone function y = f (z) such that
n( f (z)) ≡ z. Note that the derivative f ′(z) is negative and f (p0) = 0, where p0 =
n(0). Then the relations (9.3.4) can be rewritten in the following form

ξ = 2
∫ p

p0

p f ′(z) dz
√

z2 − p2
, t (ξ) = 2

∫ p

p0

z2 f ′(z) dz
√

z2 − p2
, p ≤ p0. (9.3.5)

The first relation in (9.3.5) presents ξ as a function of p, i.e., ξ = ξ(p), while
the second relation determines the other function t = t̂(p) := t (ξ(p)). The pair
〈ξ(p), t (ξ(p))〉 gives the parametric representation of the function t = t (ξ). Note
that the function t̂(p) can be presented in the form

t̂(p) = p ξ(p) + 2
∫ p

p0

√
z2 − p2 f ′(z) dz , p ≤ p0. (9.3.6)

From (9.3.6) we deduce:

t ′(ξ) = t̂ ′(p)

ξ′(p)
= p, p ≤ p0. (9.3.7)

Hence, having the function t (ξ)we can find the correspondence between ξ and p, i.e.
the function ξ = ξ(p). This function is defined for p ∈ [p1, p0], where p1 = t ′(ξ0).
Then we can use the first equation (9.3.5) in order to find f (z) for z ∈ [p1, p0].
Namely,

f (s) = 1

π

∫ p0

s

ξ(p) dp
√

p2 − s2
, s ∈ [p1, p0]. (9.3.8)

Indeed,

1

π

∫ p0

s

ξ(p) dp
√

p2 − s2
= 2

π

∫ p0

s

∫ p

p0

f ′(z) dz
√

(p2 − s2)(z2 − p2)
p dp

= 1

π

∫ s

p0

∫ z

s

2p dp
√

(p2 − s2)(z2 − p2)
f ′(z) dz =

∫ s

p0

f ′(z) dz = f (s).
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This means that n(y) = f −1(y) is determined for y ∈ [0, f (p1)]. Thus, given
t (ξ) for ξ ∈ [0, ξ0] one can uniquely find function f (z) for z ∈ [t ′(ξ0), p0] and then
n(y) inside the layer y ∈ [0, f (t ′(ξ0)].

If c′(y) ≤ 0 for all y, then the ray �(ξ, 0) reaches the point (ξ, 0) along axis
x . Hence, t (ξ) = |ξ|/c(0) and only c(0) can be found in the inverse problem. A
more interesting case is when the function c′(y) is positive for [0, y0) and changes
sign at y = y0 > 0. As was noted, in this case c(y) can be determined uniquely for
y ∈ [0, y0]. Remark that it is impossible uniquely find c(y) also for y > y0 using the
data of the inverse problem. A characterization of a set of all possible solutions to
the inverse problem in this case was given by Gerver and Markushevich [29].

9.4 The Two-Dimensional Problem

Let� ⊂ R
2 be a compact domainwithC1-smooth boundary S. Assume, furthermore,

that the positive function n(x) ⊂ C2(�) is defined in � = � ∪ S. Suppose that the
family of geodesic lines �(x, y), x ∈ �, y ∈ S, of the Riemannian metric dτ =
n(x)|dx | is regular in � and S is convex with respect to geodesics �(x, y), x ∈ S,
y ∈ S. Such functions n(x) we shall call admissible. We define the function τ (x, y)

for x ∈ �, y ∈ S, as the Riemannian distance (travel time, from a physical point of
view) between x and y.

Consider the problem: find n(x) in � from τ (x, y) given for x ∈ S and y ∈ S.
We will give now a stability estimate and uniqueness theorem for the solution

of this inverse problem, following to [70]. Let S be given in the parametric form
S = {y ∈ R

2| y = χ(t), t ∈ [0, T ]}, where χ(t) is a C1-smooth periodic function
with the period T . We assume that an increase of t corresponds to mowing point
y = χ(t) in counterclockwise. Then the output data τ (x, y), x ∈ S and y ∈ S, of the
inverse problem can be written as follows:

τ (χ(s),χ(t)) = g(s, t), (s, t) ∈ [0, T ] × [0, T ], (9.4.1)

where g(s, t) is a given function.

Theorem 9.4.1 Let n1(x) and n2(x) be admissible functions and g1(s, t) and g2(s, t)
be the output data (9.4.1) for the Riemannian metrics dτ1 = n1(x)|dx | and dτ2 =
n2(x)|dx |. Then the following stability estimate holds

‖n1 − n2‖L2(�) ≤ 1

2
√

π
‖g1 − g2‖H1([0,T ]×[0,T ]). (9.4.2)

Proof. Let n j (x) for j = 1, 2 be admissible functions and τ j (x, y) corresponding
them Riemannian distances between x and y. Introduce the functions τ̂ j (x, t) =
τ j (x,χ(t)). Then
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τ̂ j (χ(s), t) = g j (s, t), (s, t) ∈ [0, T ] × [0, T ], j = 1, 2, (9.4.3)

and

∇x τ̂ j (x, t) = n j (x)ν(θ j ), ν(θ j ) = (cos θ j , sin θ j ), j = 1, 2, (9.4.4)

where θ j = θ j (x, t) is the angle between the tangent line to the geodesic � j (x,χ(t))
and axis x1. Denote

τ̃ (x, t) = τ̂1(x, t) − τ̂2(x, t), ñ(x) = n1(x) − n2(x),

θ̃(x, t) = θ1(x, t) − θ2(x, t), g̃(s, t) = g1(s, t) − g2(s, t).

From Eq. (9.4.4) we get

∇x τ̃ (x, t) = ñ(x)ν(θ1) + n2(x)(ν(θ1) − ν(θ2)). (9.4.5)

Multiplying both sides on ν(θ1) we obtain

ν(θ1) · ∇x τ̃ (x, t) = ñ(x) + n2(x)(1 − cos θ̃). (9.4.6)

Then taking derivative with respect to t , we exclude ñ(x) and obtain the equation

∂

∂t
[ν(θ1) · ∇x τ̃ (x, t)] = n2(x) sin θ̃

∂θ̃

∂t
, x ∈ �, t ∈ [0, T ]. (9.4.7)

Letν⊥(θ1) = (− sin θ1, cos θ1).Multiply both sides of (9.4.7) on2ν⊥(θ1) · ∇x τ̃ (x, t),
we get

2(ν⊥(θ1) · ∇x τ̃ (x, t))
∂

∂t
[ν(θ1) · ∇x τ̃ (x, t)]

= 2n2(x)(ν⊥(θ1) · ∇x τ̃ (x, t)) sin θ̃
∂θ̃

∂t
. (9.4.8)

Transform both sides of the latter equality separately. For the left hand side use the
identity

2(ν⊥(θ1) · ∇x τ̃ (x, t))
∂

∂t
[ν(θ1) · ∇x τ̃ (x, t)]

= ∂

∂t
{[ν(θ1) · ∇x τ̃ (x, t)](ν⊥(θ1) · ∇x τ̃ (x, t))}

+ ∂

∂x1
[τ̃t (x, t)τ̃x2(x, t)] − ∂

∂x2
[τ̃t (x, t)τ̃x1(x, t)] + |∇x τ̃ (x, t)|2 ∂θ1

∂t
, (9.4.9)

which can be checked directly. On the other hand, we have
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2n2(x)(ν⊥(θ1) · ∇x τ̃ (x, t)) sin θ̃
∂θ̃

∂t

= 2n2(x)[ν⊥(θ1) · (n1(x)ν(θ1) − n2(x)ν(θ2)] sin θ̃
∂θ̃

∂t

= −2n2
2(x) sin2 θ̃

∂θ̃

∂t
= − ∂

∂t

{
n2
2(x)

[
θ̃ − 1

2
sin(2θ̃)

]}
. (9.4.10)

As a result of the equalities (9.4.8) and (9.4.10) we arrive at the relation

∂

∂t

{
[ν(θ1) · ∇x τ̃ (x, t)](ν⊥(θ1) · ∇x τ̃ (x, t)) + n2

2(x)
[
θ̃ − 1

2
sin(2θ̃)

]}

+ ∂

∂x1
[τ̃t (x, t)τ̃x2(x, t)] − ∂

∂x2
[τ̃t (x, t)τ̃x1(x, t)] + |∇x τ̃ (x, t)|2 ∂θ1

∂t
= 0.

(9.4.11)

Note that in the curly brackets of the latter equality stands the T periodic function
of t . Therefore, if one takes integral with respect to t over [0, T ] of the first therm, it
vanishes. Integrating (9.4.11) over � with respect to x and over [0, T ] with respect
to t , we get

∫ T

0

∫

�

{ ∂

∂x1
[τ̃t (x, t)τ̃x2(x, t)] − ∂

∂x2
[τ̃t (x, t)τ̃x1(x, t)]

+|∇x τ̃ (x, t)|2 ∂θ1

∂t

}
dxdt = 0. (9.4.12)

Using Gauss’s formula and the condition (9.4.3), we obtain

∫ T

0

∫ T

0
g̃t (s, t)g̃s(s, t)dsdt +

∫

�

∫ T

0
|∇x τ̃ (x, t)|2 ∂θ1

∂t
dtdx = 0. (9.4.13)

In the latter equality ∂θ1/∂t ≥ 0, due the regularity condition of geodesics and

|∇x τ̃ (x, t)|2 = |n1(x)ν(θ1) − n2(x)ν(θ2)|2
= ñ2(x) + 2n1(x)n2(x)(1 − cos θ̃) ≥ ñ2(x).

Therefore

2π
∫

�

ñ2(x)dx ≤ −
∫ T

0

∫ T

0
g̃t (s, t)g̃s(s, t)dsdt.

Here H 1([0, T ] × [0, T ]) is the Sobolev space of square integrable functions g(s, t)
in the domain {(s, t) : s ∈ [0, T ], t ∈ [0, T ]} together with first partial derivatives
with respect to s and t . The required estimate (9.4.2) follows from this inequality. �

As a consequence of Theorem 9.4.1 we obtain the following uniqueness theorem.
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Theorem 9.4.2 Let n1(x), n2(x) and g1(s, t), g2(s, t) be the functions defined in
Theorem 9.4.1 and g1(s, t) = g2(s, t). Then n1(x) = n2(x) for all x ∈ �.

We refer to the book [86] and papers [29, 42, 70, 82] for some other aspects of the
inverse kinematic problems.Recently, an effective iterativemethod for reconstruction
of the refractive index of a medium from time-off-flight measurements has been
proposed in [89].



Appendix A
Invertibility of Linear Operators

A.1 Invertibility of Bounded Below Linear Operators

The analysis given in Introduction allows us to conclude that most inverse problems
are governed by compact operators. More specifically, all inverse problems related
to PDEs are governed by corresponding input-output operators which are compact
operator. The last property mainly resulted from the Sobolev embedding theorems.
Therefore compactness of an operator, being an integral part of inverse problems,
is a main source of ill-posedness of inverse problems.

We begin some well-known fundamental results related to invertibility of linear
operators in Banach and, in particular, in Hilbert spaces, since compact operators on
a Banach space are always completely continuous. Details of these results can be
found in textbooks on functional analysis (see, for example, [3, 20, 103, 104]).

Let A : D ⊂ B �→ B̃ be a linear continuous operator on the Banach space B
into the Banach space B̃. Consider the operator equation Au = F , F ∈ R(A) ⊂ B̃,
whereR(A) is the range of the operator A. We would like to ask whether the linear
continuous operator A has a bounded inverse, because this is a first step for solving
the operator equation Au = F . By definition of an inverse operator, if for any
F ∈ R(A) there is at most one u ∈ D(A) such that Au = F , i.e. if the operator A is
injective, then the correspondence from B̃ to B defines an operator, which is called
an inverse operator. This definition directly implies that A−1 exists if and only if the
equation Au = 0 has only the unique solution u = 0, i.e. the null space N (A) :=
{u ∈ B : Au = 0} of the operator A consists of only zero element: N (A) = {0}.
Evidently, if A−1 exists, it is also a linear operator. Note that if H is a Hilbert space,
then by the orthogonal decomposition theorem, H = N (A)

⊕N (A)⊥, where
N (A)

⊕N (A)⊥ := {z ∈ H : z = u + v, u ∈ N (A), v ∈ N (A)⊥} and N (A)⊥ is
the orthogonal complement of N (A), i.e. (u, v)H = 0 for all u ∈ N (A) and for all
v ∈ N (A)⊥.

The first group of results in this direction is related to invertibility of bounded
below linear operators defined on Banach space.

© Springer International Publishing AG 2017
A. Hasanov Hasanoğlu and V.G. Romanov, Introduction to Inverse
Problems for Differential Equations, DOI 10.1007/978-3-319-62797-7
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Definition A.1.1 A linear operator A defined on the Banach space B into the Banach
space B̃ is called bounded below if there exists such a positive constant C > 0 that

‖Au‖B̃ ≥ C‖u‖B, ∀u ∈ D(A). (A.1.1)

The theorembelow shows an important feature of bounded below linear operators.
Specifically, a bounded below linear operator A defined between the Banach spaces
B and B̃ has always a continuous inverse defined on the rangeR(A) of A, if even A
is not continuous.

Theorem A.1.1 Let B and B̃ be Banach spaces and A be a linear continuous oper-
ator defined on B into B̃. Then the inverse operator A−1, defined on R(A), exists
and bounded if and only if it is bounded below.

Proof Assume, first, that the inverse operator A−1 exists and bounded onR(A). Then
there exists a constant M > 0 such that ‖A−1F‖B ≤ M‖F‖B̃ , for all F ∈ R(A).
Substituting here u := A−1F we get: ‖u‖B ≤ M‖Au‖B̃ . This implies (A.1.1) with
C = 1/M , i.e. A is bounded below.

Assume now condition (A.1.1) holds. This, first of all, implies injectivity of the
operator A. Indeed, let u1, u2 ∈ B be arbitrary elements and Au1 = Au2 = v ∈
R(A). Then, by condition (A.1.1),

0 = ‖Au1 − Au2‖B̃ = ‖A(u1 − u2)‖B̃ ≥ C‖u1 − u2‖B .

This ‖u1 −u2‖B = 0, i.e. implies u1 = u2. Hence for any F ∈ R(A) there is at most
one u ∈ D(A) such that Au = F , i.e. the inverse operator A−1 exists. To prove the
boundedness of this operator, we substitute u = A−1F in (A.1.1). Then we have:
‖F‖B̃ ≥ C‖A−1F‖B . This means the boundedness of the inverse operator. �

Thus, this theorem gives a necessary and sufficient condition for solvability of
the operator equation Au = F with bounded below linear operator A. A simple
illustration of this theorem can be given by the following example.

Example A.1.1 An existence of a bounded inverse.

Consider the following boundary value problem.

{
(Au)(x) := −u′′(x) = F(x), x ∈ (0, 1),
u(0) = u′(1) = 0.

(A.1.2)

We rewrite problem (A.1.2) in the operator equation form

Au = F, A : D(A)
onto−−→ C[0, 1],

which D(A) := C2(0, 1) ∩ C0[0, 1], C0[0, 1] := {u ∈ C[0, 1] : u(0) = u′(1) = 0}
and R(A) := C[0, 1]. We can show easily that the operator A is bounded below.
Indeed, the identities
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u(x) ≡
∫ x

0
u′(ξ)dξ, u′(x) ≡ −

∫ 1

x
u′′(ξ)dξ, ∀x ∈ [0, 1]

imply

|u(x)| ≤ sup
[0,1]

|u′(x)|, |u′(x)| ≤ sup
[0,1]

|u′′(x)|.

Hence,

‖Au‖C[0,1] := sup
[0,1]

|u′′(x)| ≥ ‖u‖C[0,1],

which implies that the operator A is bounded below.
Integration equation (A.1.2) and using boundary conditions, we find

u(x) =
∫ x

0

∫ 1

ξ

F(η)dηdξ =: (A−1F)(x), x ∈ [0, 1].

By definition of an inverse operator, the inverse operator A−1 : R(A) �→ D(A),
defined by (A.1.3), exists. Evidently, A−1 is bounded, although the operator A :=
d2/dx2 is unbounded. �

As the second part of the proof of the above theorem shows, condition (A.1.1)
contains within itself two conditions: injectivity of the operator A and continuity of
the inverse operator A−1. So, injectivity is a part of conditions for invertibility of
linear operators. Further, if, in addition to injectivity, R(A) ≡ B̃, i.e. the operator
A is defined on B onto B̃ or, equivalently, operator A is surjective, then the linear
continuous operator A : D ⊂ B �→ B̃ is continuously invertible for all F ∈ B̃ and
D(A−1) = B̃. In this case the operator equation Au = F has a unique solution for
all F ∈ B̃, while Theorem A.1.1 asserts that the operator equation Au = F solvable
only for F ∈ R(A). In other words, under the conditions of only Theorem A.1.1, the
operator equation Au = F may not have a solution for all F ∈ B̃. As a result of these
considerations, we conclude that the best case for unique solvability of the operator
equation Au = F is the case when the linear continuous operator A is bijective, i.e.
injective and surjective. The following result, which follows from Open Mapping
Theorem, is exactly in this direction.

Theorem A.1.2 Let A : B �→ B̃ be a linear continuous and bijective operator from
a Banach space B to a Banach space B̃. Then the inverse operator A−1 : B̃ �→ B is
also continuous (and hence bounded).
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A.2 Invertibility of Linear Compact Operators

Let us return again to the surjectivity property of the linear continuous operator A,
i.e. to the condition R(A) ≡ B̃. This condition means, first of all, the range R(A)

needs to be a closed set, since B̃ being a Banach space is a closed set. In this case,
i.e. if R(A) is a closed set, we can replace B̃ by R(A), and define the operator as
A : D ⊂ B �→ R(A). However, as we will see below, the condition R(A) ≡ B̃
is a very strong restriction, and is more difficult to satisfy for compact operators.
Even for non-compact continuous operators, this condition may not be fulfilled, as
the following simple example shows.

Example A.2.1 A linear bounded operator with non closed range

Consider the bounded linear operator A : L2(0, 1) �→ L2(0, 1), defined as

(Au)(x) :=
∫ x

0
u(y)dy, u ∈ H := L2(0, 1).

The range of this operator is the subspace H̊ 1(0, 1) := {v ∈ H 1(0, 1) : u(0) = 0}
of the Sobolev space H 1(0, 1). Since the space H̊ 1(0, 1) ⊂ L2(0, 1) is not closed
in L2(0, 1), the range R(A) = H̊ 1(0, 1) of the above bounded linear operator is not
closed, i.e.R(A) �= R(A). �

Thus, this example shows that not only the condition R(A) ≡ B̃, but even more
weaker conditionR(A) ≡ R(A)maynot be satisfied. If the conditionR(A) ≡ R(A)

holds, then the linear bounded operator A is defined as a closed range operator.
Otherwise, i.e. ifR(A) �= R(A), A is defined as a non-closed range operator. Note
that the operator equation Au = F with non-closed range operator A is defined
ill-posed, according to the concept of M.Z. Nashed [73].

The following fundamental theorem shows what means the conditionR(A) ≡ B̃
in terms of invertibility of linear compact operators. In particular, this theorem implies
that a compact linear operator A : B �→ B̃ defined in infinite-dimensional Banach
space B is not invertible.

Theorem A.2.1 Let A : B �→ B̃ be a linear compact operator defined between the
Banach spaces B and B̃. Assume that R(A) ≡ B̃, i.e. A is surjective. If A has a
bounded inverse A−1 on B̃ onto B, then B is finite dimensional.

Note that a compact operator A : H �→ H̃ is called finite dimensional (or finite-
rank) operator, if its rangeR(A) is a finite dimensional set in H̃ . As we noted above,
if a bounded linear operator is of finite dimensional, then it is a compact operator.

From this theoremwe can deduce some important properties related to invertibility
of linear compact operators.

Corollary A.2.1 A surjective linear compact operator A : B �→ B̃ defined on a
infinite-dimensional Banach space B can not have a bounded inverse.
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Let us compare now TheoremA.1.2 with TheoremA.2.1, where in both the linear
continuous operator A is surjective, i.e. is onto B̃. Theorem A.1.2 asserts that the
inverse operator A−1 : B̃ �→ B is continuous, while Theorem A.2.1 asserts that if
the inverse operator A−1 : B̃ �→ B is continuous, then B̃ must be finite dimensional.
This leads to the following conclusion.

Corollary A.2.2 If B̃ is infinite-dimensional, there is no injective compact linear
operator A : B �→ B̃, defined from B onto B̃.

Let us analyze now what does mean surjectivity condition for linear compact
operators, imposed in TheoremA.2.1. As it was noted above, this condition (R(A) ≡
B̃) is a very strong restriction and may not be satisfied for some classes of compact
operators. What happens if the this condition does not hold, i.e. A is not surjective,
and is only a closed range compact operator, i.e. R(A) ≡ R(A)? Next theorem
shows that, at least in Hilbert spaces, the closedness and finite dimensionality of the
range of a linear compact operators are equivalent properties.

Theorem A.2.2 Let A : H �→ H̃ be a linear compact operator defined between
two infinite-dimensional Hilbert spaces H and H̃ . Then the range R(A) is closed if
and only if it is finite dimensional.

Proof The proof of this theorem is based on the well-known elementary result that
the identity operator I : R(A) �→ R(A) is compact if and only if its range R(A) is
finite dimensional. Indeed, if R(A) is closed, then it is complete in H̃ , i.e. is also a
Hilbert space. Then we can use decomposition theorem, H = N (A)

⊕N (A)⊥, and
define the restriction A|N (A)⊥ of the compact operator A on N (A)⊥, according the
construction given in Sect. 1.3. Evidently, this restriction is continuous and bijective
onto the Hilbert space R(A). Hence we may apply Theorem A.1.2 to conclude that
the restricted operator A|N (A)⊥ has a bounded inverse. Then the identity operator

I := A
(

A|N (A)⊥
)−1 : R(A) �→ R(A),

defined as a superposition of compact and continuous operators, is also compact.
This completes the proof. �.

Besides the above mentioned importance, the above theorems are directly related to
ill-posed problems. Indeed, if A : H �→ H̃ be a linear compact operator between the
infinite-dimensional Hilbert spaces H and H̃ , and its range R(A) is also infinite-
dimensional, thenR(A) is not closed, by the assertion of the theorem.Thismeans that
the equation Au = F is ill-posed in the sense of the condition (p1) of Hadamard’s
ill-posedness, defined in Introduction. Note that the range of almost all integral (com-
pact) operators related to integral equations with non-degenerate kernel, is infinite-
dimensional. Below we will illustrate how an infinite-dimensional range compact
operator, defined by the integral equation with Hilbert-Schmidt kernel function,
can uniformly be approximated by a sequence of finite rank compact operators.
In inverse problems this approach, i.e. the restriction of infinite-dimensional range

http://dx.doi.org/10.1007/978-3-319-62797-7_1
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compact operator A to a finite dimensional subspace of H̃ , is defined as regulariza-
tion by discretization. Although this approach yields a well-posed problem, since
linear operators on finite dimensional spaces are always bounded (i.e. continuous),
the condition number of the finite dimensional problem may be very large unless the
finite dimensional subspace is chosen properly.

Thus, a finite dimensionality of a range of a linear compact operator A may
“remove” the ill-posedness of the equation Au = F . On the other hand, many com-
pact operators, associated with function spaces that occur in differential and integral
equations, can be characterized as being the limit of a sequence of bounded finite
dimensional operators. The following theorem gives a construction of a sequence of
bounded finite dimensional operators in separable Hilbert space [61].

Theorem A.2.3 Let A : H �→ H̃ be an infinite-dimensional linear compact oper-
ator defined on a separable Hilbert space H. Then there exists a sequence of finite
dimensional linear operators {AN } such that A is a norm limit of this sequence, i.e.
‖A − AN ‖H̃ → 0, as n → ∞.

Proof As a separable Hilbert space, H has an orthonormal basis, defined as {ψn ∈
H : n ∈ N }, and for any u ∈ H we can write

u =
∞∑

n=1

〈u,ψn〉Hψn; Au =
∞∑

n=1

〈u,ψn〉H Aψn.

We use this orthonormal basis to define the finite dimensional linear AN : H �→ H̃
operator as follows:

AN u :=
N∑

n=1

〈u,ψn〉H Aψn. (A.2.2)

Since both operators A and AN are compact, the operator RN := A − AN is also
compact. To prove the theorem, we need to show that ‖RN ‖ → 0 or equivalently,

rN := sup
‖u‖H ≤1

‖RN u‖H̃ → 0, as N → ∞. (A.2.3)

By definition of the supremum, there exists a sequence {u(n)} ⊂ H , such that
‖u(n)‖H ≤ 1, for all n ∈ N , and ‖RN u(n)‖H̃ → rN , as n → ∞. Further, by Banach-
Alaoglu theorem, there is aweakly convergent subsequence {u(nm )} ⊂ {u(n)} such that
u(nm ) ⇀ u∗

N , and ‖u∗
N ‖H ≤ 1. Then the compact operator RN transforms this weakly

convergent subsequence to the strongly convergent one: ‖RN u(nm ) − RN u∗
N ‖H̃ → 0,

as nm → ∞. In particular, ‖RN u(nm )‖H̃ → ‖RN u∗
N ‖H̃ . On the other hand,

‖RN u(n)‖H̃ → rN , as n → ∞. This implies that rN = ‖RN u∗
N ‖H̃ .

Let us define now the difference RN u∗
N := (A − AN )u∗

N using (A.2.2) and (A.2.3):
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RN u∗
N = A

∞∑

n=N+1

〈u∗
N ,ψn〉H Aψn =: AS∗

N , S∗
N :=

∞∑

i=N+1

〈u∗
N ,ψn〉H Aψn.

This show that in order to prove rN → 0, as N → ∞, we need to prove the weak
convergence SN ⇀ 0, as N → ∞, due to the compactness of the operator RN . Using
the Hölder inequality and the Parseval’s equality, we have:

|〈SN , u〉H | =
〈 ∞∑

n=N+1

〈u∗
N ,ψn〉Hψn,

∞∑

n=1

〈u,ψn〉Hψn

〉

H

=
〈 ∞∑

n=N+1

〈u∗
N ,ψn〉Hψn,

∞∑

n=N+1

〈u,ψn〉Hψn

〉

H

≤
( ∞∑

n=N+1

|〈u∗
N ,ψn〉H |

)1/2 ( ∞∑

n=N+1

|〈u,ψn〉H |
)1/2

≤ ‖u∗
N ‖H

( ∞∑

n=N+1

|〈u,ψn〉H |
)1/2

.

The ‖u∗
N ‖H ≤ 1 and the second multiplier in the last inequality tends to zero, as

N → 0. Hence, for any u ∈ H , |〈SN , u〉H | → 0, as N → 0. This completes the
proof. �

This theorem implies that the set of finite dimensional linear operators is dense
in the space of compact operators defined on a separable Hilbert space.

Example A.2.2 An approximation of a compact operator associated with an integral
equation

Consider the linear bounded operator defined by (1.3.2):

(Au) (x) :=
∫ b

a
K (x, y)u(y)dy, x ∈ [a, b],

assuming H = H̃ = L2(a, b), K ∈ L2((a, b) × (a, b)) and ‖K‖L2((a,b)×(a,b)) ≤ M .
Evidently, under these assumptions the integral operator A : H �→ H̃ , defined as a
Hilbert-Schmidt operator with non-degenerate (or non-separable) kernel function,
is a compact operator. Let {φn ∈ L2(a, b) : n ∈ N } be an orthonormal basis for
L2(a, b). Then

{ψm,n ∈ L2((a, b) × (a, b)) : ψm,n(x, y) := φn(x)φn(y), n, m ∈ R}

forms an orthonormal basis for L2((a, b) × (a, b)). Hence

http://dx.doi.org/10.1007/978-3-319-62797-7_1
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KN (x, y) :=
N∑

n,m=1

〈K ,ψm,n〉L2((a,b)×(a,b))ψm,n(x, y), x, y ∈ [a, b].

Now we define the operator

(AN u) (x) :=
∫ b

a
KN (x, y)u(y)dy, x ∈ [a, b].

Evidently, AN : H �→ H̃N ⊂ H̃ is a finite dimensional compact operator with the
range RN (AN ) ⊂ span{ψm,n(x, y)}N

m,n=1 and ‖A − AN ‖H̃ → 0, as n → ∞, as
follows from Theorem A.2.3 in Introduction. �

As was noted above, the range of a compact operator is “almost finite dimen-
sional”. Specifically, not only a compact operator itself can be approximated by
finite dimensional linear (i.e. compact) operators, but also the range of a linear com-
pact operator can be approximated by a finite dimensional subspace. This gives a
further justification for the presentation of the following theorem.

Theorem A.2.4 Let A : B �→ B̃ be a linear operator between two infinite-
dimensional Banach spaces B and B̃. Then for any ε > 0 there exists a finite
dimensional subspace RN (A) ⊂ R(A) such that, for any u ∈ B

inf
v∈RN (A)

‖Au − v‖B ≤ ε‖u‖B .

This well-known result can be found in the above mentioned books on functional
analysis.

Remark finally that the approaches proposed in Theorems A.2.3 and A.2.4 are
widely used within the framework of regularization methods based on discretization.



Appendix B
Some Estimates For One-Dimensional Parabolic
Equation

We prove here some basic estimates for the weak and regular weak solutions of the
direct problem

⎧
⎨

⎩

ut (x, t) = (k(x)ux (x, t))x , (x, t) ∈ �T ,

u(x, 0) = 0, 0 < x < l,
−k(0)ux (0, t) = g(t), ux (l, t) = 0, 0 < t < T,

(B.0.1)

discussed in Sect. 5.5.
Note first of all, that energy estimates for the second order parabolic equations are

given in general form in the books [24, 57]. A priori estimates given below for the
weak and regular weak solutions of problem (B.0.1) cannot be obtained directly from
those given in general form. Our aim here to derive all necessary a priori estimates
for the weak and regular weak solutions and for their derivatives via the Neumann
datum g(t). To derive these energy estimates as well as to prove an existence of weak
solutions by the Galerkin approximation one needs indeed to proceed three steps:
1. Construction of the approximate solution,

un(x, t) =
n∑

i=1

dn,i (t)ϕi (x), (x, t) ∈ �T .

where {ϕi }∞i=1 are orthonormal eigenvectors of the differential operator � : H 2(0, l) �→
L2(0, l) defined by

{
(�ϕ)(x) := −(k(x)ϕ′(x))′ = λϕ(x), x ∈ (0, l);
ϕ′(0) = 0, ϕ′(l) = 0,

corresponding to eigenvalues {λi }∞i=1.
2. Derivation of energy estimates for the approximate solution un(x, t);
3. Convergence of the approximate solution to a weak solution in appropriate sense.

© Springer International Publishing AG 2017
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However, we will derive here necessary for our goals energy estimates directly
for a weak solution, omitting these steps. Readers can find details of these steps in
the books ([57], Sect. 3) and ([24], Sect. 7.1).

We assume here, as in Sect. 5.5, that the functions k(x) and g(t) satisfy the fol-
lowing conditions:

{
k ∈ H 1(0, l), 0 < c0 ≤ k(x) ≤ c1 < ∞;
g ∈ H 1(0, T ), g(t) > 0, for all t ∈ (0, T ), and g(0) = 0.

(B.0.2)

Under these conditions the regular weak solution of problem (B.0.1) with improved
regularity defined as

⎧
⎨

⎩

u ∈ L∞(0, T ; H 2(0, l)),
ut ∈ L∞(0, T ; L2(0, l)) ∩ L2(0, T ; H 1(0, l)),
utt ∈ L2(0, T ; H−1(0, l)),

(B.0.3)

exists and unique, according to [24, 57].

B.1 Estimates For the Weak Solution

Firstwederivehere somenecessary estimates for theweak solutionu ∈ L2(0, T ; H 1(0, l))
with ut ∈ L2(0, T ; H−1(0, l)) of problem (B.0.1) which are used in Sect. 5.5. To
obtain these estimates we need the following Gronwall-Bellman inequality [13].

Lemma B.1.1 Let v(t) and f (t) be nonnegative continuous functions defined on
[α,β], and r(t) be positive continuous and nondecreasing function defined on [α,β].
Then the inequality

v(t) ≤
∫ t

α

f (τ )v(τ )dτ + r(t), t ∈ [α,β]

implies that

v(t) ≤ r(t) exp

(∫ t

α

f (τ )dτ

)

, t ∈ [α,β]. (B.1.1)

Lemma B.1.2 Let the conditions hold:
{

k ∈ L∞(0, l), 0 < c0 ≤ k(x) ≤ c1,
g ∈ L2(0, T ).

(B.1.2)

Then for the weak solution of the parabolic problem (B.0.1) the following estimate
holds:

http://dx.doi.org/10.1007/978-3-319-62797-7_5
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max[0,T ] ‖u‖L2(0,l) + ‖ux‖L2(0,T ;L2(0,l)) ≤ C0 ‖g‖L2(0,T ), (B.1.3)

where C0 = max{C1; C2},
{

C1 = (l/c0)
1/2 exp(T c0/ l2),

C2 = (
2T C2

1/ l2 + l/c20
)1/2

.
(B.1.4)

and the constant c0 > 0 is defined by (B.0.2).

Proof Multiply both sides of Eq. (B.0.1) by u(x, t), integrate on [0, l] and then use
the integration by parts formula. Taking into account the boundary conditions in
(B.0.1) we get:

1

2

d

dt

∫ l

0
u2(x, t)dx +

∫ l

0
k(x)u2

x (x, t)dx = g(t)u(0, t).

Integrating both sides on [0, t], t ∈ [0, T ] and using the initial condition u(x, 0) = 0
obtain the following energy identity:

∫ l

0
u2(x, t)dx + 2

∫ t

0

∫ l

0
k(x)u2

x (x, τ )dxdτ = 2
∫ t

0
g(τ )u(0, τ )dτ ,

for a.e. t ∈ [0, T ]. Using now the ε-inequality 2ab ≤ (1/ε) a2 + ε b2 in the last right
hand side integral to get:

∫ l

0
u2(x, t)dx + 2c0

∫ t

0

∫ l

0
u2

x (x, τ )dxdτ

≤ 1

ε

∫ t

0
g2(τ )dτ + ε

∫ t

0
u2(0, τ )dτ , (B.1.5)

for a.e. t ∈ [0, T ], where c0 > 0 is the constant in condition (B.1.2). To estimate the
last integral in (B.1.5) we use the identity

u2(0, t) =
(

u(x, t) −
∫ x

0
uξ(ξ, t)dξ

)2

,

apply to the right hand side the inequality (a − b)2 ≤ 2(a2 + b2) and then use the
Hölder inequality. Integrating then on [0, l] we obtain:

∫ t

0
u2(0, τ )dτ ≤ 2

∫ t

0
u2(x, τ )dτ + 2x

∫ t

0

∫ l

0
u2

x (x, τ )dxdτ .

Integrating again on [0, l] and then dividing by l > 0 both sides we arrive at the
inequality:
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∫ t

0
u2(0, τ )dτ ≤ 2

l

∫ l

0

∫ t

0
u2(x, τ )dτdx + l

∫ t

0

∫ l

0
u2

x (x, τ )dxdτ . (B.1.6)

Using this we estimate in (B.1.5) we deduce:

∫ l

0
u2(x, t)dx + (2c0 − lε)

∫ t

0

∫ l

0
u2

x (x, τ )dxdτ

≤ 2ε

l

∫ l

0

∫ t

0
u2(x, τ )dτdx + 1

ε

∫ t

0
g2(τ )dτ , (B.1.7)

for a.e. t ∈ [0, T ].We require that the arbitrary parameter ε > 0 satisfies the condition
0 < ε < 2c0/ l. Taking for convenience this parameter as ε = c0/ l we obtain:

∫ l

0
u2(x, t)dx + c0

∫ t

0

∫ l

0
u2

x (x, τ )dxdτ

≤ 2c0
l2

∫ l

0

∫ t

0
u2(x, τ )dτdx + l

c0

∫ t

0
g2(τ )dτ . (B.1.8)

The first consequence of (B.1.8) is the inequality

∫ l

0
u2(x, t)dx ≤ 2c0

l2

∫ t

0

∫ l

0
u2(x, τ )dxdτdx + l

c0

∫ t

0
g2(τ )dτ ,

for a.e. t ∈ [0, T ]. Applying Lemma B.1.1 to this inequality we deduce that

∫ l

0
u2(x, t)dx ≤ C2

1

∫ t

0
g2(τ )dτ , t ∈ [0, T ], (B.1.9)

whereC1 > 0 is the constant defined by (B.1.4). Then the norm ‖u‖L2(0,l) is estimated
as follows:

‖u‖L2(0,l) ≤ C1‖g‖L2(0,T ), t ∈ [0, T ]. (B.1.10)

Remember that according to Theorem 3.1.1 in Sect. 2.1, the weak solution is in
C(0, T ; L2(0, l)). Hence (B.1.10) implies the following estimate for the weak solu-
tion of the direct problem (B.1.5):

max[0,T ] ‖u‖L2(0,l) ≤ C1‖g‖L2(0,T ). (B.1.11)

The second consequence of (B.1.8) is the inequality

c0

∫ T

0

∫ l

0
u2

x (x, τ )dxdt ≤ 2c0
l2

∫ T

0

∫ l

0
u2(x, t)dxdtdx + l

c0

∫ T

0
g2(t)dt.

http://dx.doi.org/10.1007/978-3-319-62797-7_3
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Using estimate (B.1.9) we deduce from this inequality the following estimate:

∫∫

�T

u2
x (x, t)dxdt ≤ C2

2

∫ T

0
g2(t)dt, (B.1.12)

where C2 = C2(l, T, c0) > 0 is the constant defined by (B.1.4).
Estimates (B.1.11) and (B.1.12) imply the required estimate (B.1.3). �

B.2 Estimates for the Regular Weak Solution

In addition to the above estimates for the weak solution, we use in Sect. 5.5 some
estimates for the regular weak solution with improved regularity defined by (B.0.3).

Lemma B.2.1 Let conditions (B.0.2) hold. Then for the regular weak solution of
the parabolic problem (B.0.1) defined by (B.0.3) the following estimates hold:

{
ess sup

[0,T ]
‖ut‖L2(0,l) ≤ C1 ‖g‖V(0,T ),

‖uxt‖L2(0,T ;L2(0,l)) ≤ C2 ‖g‖V(0,T ),
(B.2.1)

where V(0, T ) := {g ∈ H 1(0, T ) : g(0) = 0} and the constants C1 > 0, C2 > 0 are
defined by (B.1.4).

Proof Differentiate formally Eq. (B.0.1) with respect to t ∈ (0, T ), multiply both
sides by ut (x, t), integrate over [0, l] and use the integration by parts formula. Taking
then into account the initial and boundary conditions we obtain the following integral
identity:

1

2

d

dt

∫ l

0
u2

t (x, t)dx +
∫ l

0
k(x)u2

xt (x, t)dx = g′(t)ut (0, t).

Integrating this identity on [0, t], t ∈ [0, T ] and using the limit equation

∫ l

0
u2

t (x, 0+)dx = lim
t→0+

∫ l

0

(
(k(x)ux (x, 0+))x

)2
dx = 0,

to deduce that

∫ l

0
u2

t (x, t)dx + 2
∫ t

0

∫ l

0
k(x)u2

xτ (x, τ )dxdτ = 2
∫ t

0
g′(τ )uτ (0, τ )dτ ,

for all t ∈ [0, T ]. Applying now the ε-inequality 2ab ≤ (1/ε) b2 + ε a2 to the last
right hand side integral we obtain the inequality:

http://dx.doi.org/10.1007/978-3-319-62797-7_5
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∫ l

0
u2

t (x, t)dx + 2c0

∫ t

0

∫ l

0
k(x)u2

xτ (x, τ )dxdτ

≤ 1

ε

∫ t

0

(
g′(τ )

)2
dτ + ε

∫ t

0
u2

τ (0, τ )dτ , t ∈ [0, T ].

Using the same argument as in the proof of inequality (B.1.6), we estimate the last
right hand side integral as follows:

∫ t

0
u2

τ (0, τ )dτ ≤ 2

l

∫ l

0

∫ t

0
u2

τ (x, τ )dτdx + l
∫ t

0

∫ l

0
u2

xτ (x, τ )dxdτ , (B.2.2)

for all t ∈ [0, T ]. Substituting this in above inequality we conclude:

∫ l

0
u2

t (x, t)dx + (2c0 − lε)
∫ t

0

∫ l

0
u2

xτ (x, τ )dxdτ

≤ 2ε

l

∫ t

0

∫ l

0
u2

τ (x, τ )dxdτ + 1

ε

∫ t

0

(
g′(τ )

)2
dτ , t ∈ [0, T ] (B.2.3)

This is the same inequality (B.1.7) with u(x, t) replaced by ut (x, t) and g(t) replaced
by g′(t). Repeating the same procedure as in the proof of the previous lemma we
deduce that

∫ l

0
u2

t (x, t)dx ≤ C2
1

∫ t

0

(
g′(τ )

)2
dτ , t ∈ [0, T ], (B.2.4)

and then

∫∫

�T

u2
xt (x, t)dxdt ≤ C2

2

∫ T

0

(
g′(t)

)2
dt, (B.2.5)

where C1, C2 > 0 are the constants defined by (B.1.4).
With the inequality ‖g′‖L2(0,T ) ≤ ‖g‖V(0,T ) estimates (B.2.4) and (B.2.5) imply

the required estimate (B.2.1). �
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Spectral representation, 38
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